ufw auf Strato-vServern mit Debian 8 – fehlende iptables Log-Meldungen im systemd-Journal – rsyslogd

Gestern hatte ich das Vergnügen, ein Debian-Server-System auf einer aktuellen vServer-Plattform bei Strato einzurichten. Ich bereite entsprechende Arbeiten in der Regel vor, indem ich elementare Konfigurationsschritte - im Besonderen solche, die sicherheitsrelevant sind - vorab auf einem ähnlichen KVM-Gast-System in unserem Hausnetz simuliere und teste.

Diese Art von vorbereitenden Tests hat jedoch ihre Grenzen; nicht alles ist vergleichbar. Gestern bin ich mal wieder auf einen Unterschied im Zusammenhang mit iptables, ufw und den zugehörigen LOG-Meldungen unter systemd gestoßen. Letztere fehlten nämlich im systemd-Journal des Strato-vServers völlig.

Da fragt man sich schon, wie man denn unter solchen Voraussetzungen das gehostete System bzgl. von Angriffsmustern monitoren soll. Ich finde, diese Frage ist so relevant, dass sie sich auch andere Strato-Kunden besser vor dem Mieten eines vServers beantworten sollten. Deshalb dieser Post. Die gute Nachricht ist: Es gibt unabhängig von den Ursachen für das Fehlen der LOG-Meldungen einen Workaround.

Die schlechte Nachricht ist: Die Ursache der fehlenden Kernel-Meldungen im systemd-Journal ist unklar; zumindest mir. Auf einem KVM-Host funktioniert alles wie erwartet. Unterschiede zu gehosteten Servern sind meist auf einen anderen Ansatz in der Virtualisierung zurückzuführen (Stichwort: Container-Technologie vs. Hypervisor für Full/Para-Virtualisierung).

In diesem Falle erscheint mir das aber als Erklärungsansatz nicht plausibel und hinreichend. Ich gehe nachfolgend auf die Gründe etwas genauer ein. Zudem ist bei Debian 8 (leider) eben auch systemd in den Logging-Prozess involviert. Defizite von "systemd" in der Interaktion mit bestimmten Virtualisierungsumgebungen halte ich für durchaus möglich. Der Irrwitz, dass ein Programm beim Systemstart die Umgebung analysieren und für jeden Fall die richtige Antwort ziehen muss, hat halt seinen Preis ...

ufw, netfilter/iptables und das Logging-Problem

Ich bin eigentlich ein Freund von Firewall-Builder (FWB). Für Debian-Systeme verwende ich aber auch "ufw", um initial die wichtigsten Paketfilter-Regeln, also iptables-Anweisungen, bequem und zeitsparend aufzusetzen. Die drehen sich zunächst um den SSH-Zugang von außen und die Erlaubnis, dass der gehostete Server DNS-Server, NTP-Server und bestimmte Update-Server kontaktieren darf. Auch "pings" und "traceroute" vom Server nach außen erlaube ich. Alles andere wird von mir anfänglich rigoros geblockt. Später wird dann für die angestrebten Services des Servers gezielt nachgearbeitet. (Off topic: Viele Dienste, die mein Kunde benötigt, tunnele ich auf dem Server über eine SSH-Verbindung; ein direkter SSH-Zugang des Users root wird sowieso unterbunden und der SSH-Port verschoben.)

Anfänglich ist hinsichtlich eines minimalen Regelsatzes gar nicht viel zu tun. Im Anschluss an das Etablieren der ersten Paketfilter-Regeln möchte ich gerne die Arbeit von "netfilter" testen und das zugehörige Logging mitverfolgen. Typischerweise lasse ich dann "nmap" von außen auf das gehostete System los. Für einen Test des Serverzugriffs auf externe DNS-Dienste und Zugriffe auf Update-Server tut es dagegen "apt-get". In beiden Fällen verfolge ich per SSH auf einem (Remote-) Terminal den Strom der Meldungen der (ufw-)"Firewall".

Das erhoffte Verfolgen der iptables-Log-Meldungen schlug auf dem Strato-vServer mit installiertem Debian 8 aber fehl.

Debian 8.x nutzt wie gesagt systemd. Ufw schreibt die iptables-Log-Daten mit eigenen Zusätzen in das Log-System des Servers - bei einem systemd-basierten Systemen also in das dortige binäre Journal. Das systemd-Journal fängt im Normalfall neben System-Meldungen und Meldungen aus dem Userspace auch Kernel-Messages auf. Da systemd den gesamten Mix aus Messages in ein binäres Datenformat in einer Datei überführt, muss man das Kommando "journalctl" mit geeigneten Filtern bzw. der Option "-f -nxxx" benutzen, um Log-Einträge auswerten bzw. direkt am Schirm mitverfolgen zu können.

Gesagt, getan. Leider tauchen auf einem Strato-vServer im Journal von "systemd" generell nur sehr wenig Informationen auf; hinsichtlich der Paketfilter-LOG-Meldungen findet man dort jedoch leider gar nichts.

Das iptables-Target "LOG" mündet auf einem mit "rsyslogd" ausgestatteten Log- und Warnsystem dagegen in Meldungen in der Datei "/var/log/kern.log" - schließlich handelt es sich ja um Kernel-Meldungen.

Die aus meiner Sicht schon immer kritikwürdige Idee, alle systemrelevanten Meldungen an einer Stelle in einem Binärformat zu sammeln, wird uns auf einem Strato vServer nun offenbar zum Verhängnis: Nur mit systemd können wir kleine und große externe Zugriffsversuche auf einen vServer offenbar nicht überwachen!

Ich bin übrigens nicht der Einzige, der dieses Problem hatte; siehe:
http://linux.debian.user.german.narkive.com/8AbyxJTP/keine-eintrage-von-dmesg-im-journal-systemd
Erstaunlich ist dennoch, dass man ansonsten im Internet fast nichts zu dieser Thematik findet.

Ob das Problem nun etwas mit systemd-Defiziten oder einer speziellen Konfiguration der systemd-Interaktion mit der Virtualisierungsumgebung bei Strato zu tun hat, muss man natürlich ein wenig austesten.

Firewall-Logging, Virtualisierung und Container

Tatsächlich erweist sich das Verhalten von Debian 8 mit "ufw" auf einem KVM-Gastsystem als gänzlich anders. Hier ein Auszug der ufw-Meldungen von einem KVM-Gast mit Debian 8, die mittels des Befehls

"journalctl -f -n20"

zur Anzeige gebracht wurden:

Apr 05 16:05:52 deb11 kernel: [UFW BLOCK] IN=eth0 OUT= MAC=52:54:00:d5:4a:9b:52:54:00:fc:27:c5:08:00 SRC=192.168.10.1 DST=192.168.10.11 LEN=44 TOS=0x00 PREC=0x00 TTL=54 ID=25556 PROTO=TCP SPT=64358 DPT=110 WINDOW=1024 RES=0x00 SYN URGP=0 
Apr 05 16:05:52 deb11 kernel: [UFW BLOCK] IN=eth0 OUT= MAC=52:54:00:d5:4a:9b:52:54:00:fc:27:c5:08:00 SRC=192.168.10.1 DST=192.168.10.11 LEN=44 TOS=0x00 PREC=0x00 TTL=59 ID=47868 PROTO=TCP SPT=64358 DPT=135 WINDOW=1024 RES=0x00 SYN URGP=0 
Apr 05 16:05:52 deb11 kernel: [UFW BLOCK] IN=eth0 OUT= MAC=52:54:00:d5:4a:9b:52:54:00:fc:27:c5:08:00 SRC=192.168.10.1 DST=192.168.10.11 LEN=44 TOS=0x00 PREC=0x00 TTL=45 ID=41401 PROTO=TCP SPT=64358 DPT=53 WINDOW=1024 RES=0x00 SYN URGP=0 
Apr 05 16:05:52 deb11 kernel: [UFW ALLOW] IN=eth0 OUT= MAC=52:54:00:d5:4a:9b:52:54:00:fc:27:c5:08:00 SRC=192.168.10.1 DST=192.168.10.11 LEN=44 TOS=0x00 PREC=0x00 TTL=42 ID=10106 PROTO=TCP SPT=64358 DPT=22 WINDOW=1024 RES=0x00 SYN URGP=0 
Apr 05 16:05:52 deb11 kernel: [UFW BLOCK] IN=eth0 OUT= MAC=52:54:00:d5:4a:9b:52:54:00:fc:27:c5:08:00 SRC=192.168.10.1 DST=192.168.10.11 LEN=44 TOS=0x00 PREC=0x00 TTL=54 ID=65381 PROTO=TCP SPT=64358 DPT=113 WINDOW=1024 RES=0x00 SYN URGP=0 
Apr 05 16:05:52 deb11 kernel: [UFW BLOCK] IN=eth0 OUT= MAC=52:54:00:d5:4a:9b:52:54:00:fc:27:c5:08:00 SRC=192.168.10.1 DST=192.168.10.11 LEN=44 TOS=0x00 PREC=0x00 TTL=47 ID=1758 PROTO=TCP SPT=64358 DPT=587 WINDOW=1024 RES=0x00 SYN URGP=0 
Apr 05 16:05:52 deb11 kernel: [UFW BLOCK] IN=eth0 OUT= MAC=52:54:00:d5:4a:9b:52:54:00:fc:27:c5:08:00 SRC=192.168.10.1 DST=192.168.10.11 LEN=44 TOS=0x00 PREC=0x00 TTL=47 ID=22236 PROTO=TCP SPT=64358 DPT=443 WINDOW=1024 RES=0x00 SYN URGP=0 
Apr 05 16:05:52 deb11 kernel: [UFW BLOCK] IN=eth0 OUT= MAC=52:54:00:d5:4a:9b:52:54:00:fc:27:c5:08:00 SRC=192.168.10.1 DST=192.168.10.11 LEN=44 TOS=0x00 PREC=0x00 TTL=55 ID=60478 PROTO=TCP SPT=64358 DPT=23 WINDOW=1024 RES=0x00 SYN URGP=0 
Apr 05 16:05:52 deb11 kernel: [UFW BLOCK] IN=eth0 OUT= 

 
Offensichtlich führt im obigen Fall das System 192.168.10.1 einen Portscan auf dem betroffenen KVM-Host mit der IP 192.168.10.11 durch.

Ähnliche Meldungen erhält man bei einem Portscan auf einem vServer aber - wie gesagt - nicht.

Wie könnte man das erklären?
Ein naheliegender Erklärungsansatz wäre etwa folgender:
Das Logging von Kernel-Messages klappt auf einem KVM-Gast, also unter dem QEMU-Hypervisor (sog. Typ 2 Hypervisor), der über "virtio" auf dem Host nur partiell Paravirtualisierung und keine Container-Technologie einsetzt, natürlich problemfrei. Das Betriebssystem des KVM-Gastes und dessen Kernel arbeiten ja weitgehend autonom und greifen nur über Vermittlungsschichten auf den Kernel des Hosts und dessen HW-Unterstützung zu. Es besteht von Haus aus kein Problem bzgl. des Loggings von Kernel-Meldungen - sie beziehen sich immer auf den Kernel des Gastsystems.

Dagegen setzt Strato Container-Technologie ein - genauer VZ-Container unter Virtuozzo; selbiges basiert auf OpenVZ. Zu Grundeigenschaften siehe :
https://openvz.org/Main_Page und https://openvz.org/Features

Es handelt sich bei Strato wohl um Version 4.7 oder eine frühe 6er Version von "Virtuozzo Containers". Dafür gibt es Indizien (u.a, dass sich Docker nicht installieren lässt); um einen genauen Nachweis habe ich mich aber (noch) nicht gekümmert. Ist auch egal.

In einer Container-Lösung wird jedenfalls die Kapazität und Funktionalität des Host-Kernels zwischen den Containern, die keinen eigenen Kernel besitzen, geteilt (schlanker "Single-Kernel-Approach"). Der Zugriff auf Netze erfolgt über eine entsprechende Netzwerk- und Schnittstellen-Virtualisierung. Typischerweise werden virtuelle venet- oder veth-NICs eingesetzt; je nachdem, auf welcher Ebene OSI-Stacks man arbeiten will. (veth-NICs setze ich selbst vielfach auch in komplexeren KVM/Qemu-Umgebungen bei der Netzwerkvirtualisierung ein.)

Die notwendige Separation der Container und ihrer Netzwerk-Kommunikation gegeneinander und gegenüber dem Host muss vom Host-Kernel bzw. dessen Modulen auf der Basis von Konfigurationsvorgaben für unpriviligierte Container (in ihren separaten Namespaces und bei modernen Ansätzen ggf. in cGroups) gewährleistet werden. Man wird den Container-Systemen jedenfalls nicht erlauben, alles einzusehen, was auf dem für alle zuständigen Host-Kernel abläuft. Dies bedeutet u.a., dass Containersysteme nicht beliebige Kernel-Module (z.B. für Packettracking unter Wireshark) laden dürfen.

Wer "iptables" im Zusammenhang mit Virtualisierungshosts aber ein wenig genauer kennt, kann sich vorstellen, dass man eine Host-Firewall natürlich immer so konfigurieren kann, dass die einzelnen virtuellen Netzwerkschnittstellen der (Container-) Gäste gegeneinander geblockt werden, aber dass generelle Forward-Regeln für physikalische Interfaces des Hosts nicht in Konflikt mit speziellen Filter-Regeln für ein spezifisches (virtuelles) Gast-Interface geraten müssen.

OpenVZ kann man deshalb sehr wohl so einrichten, dass der Admin eines Container-Systems seine eigenen iptables-Regeln für seine gastspezifischen NICs definieren kann. Siehe hierzu z.B.:
https://openvz.org/Setting_up_an_iptables_firewall.

Wesentliche Teile der verschiedenen netfilter-Module - im Besonderen für die Schicht 3 - stehen also auch Gästen zur Verfügung. Voraussetzung ist in einer Container-Architektur natürlich, dass grundlegende "netfilter"-Module auf dem OpenVZ-Host selbst geladen wurden.

Aber: Es wäre fahrlässig, wenn ein Container-Host alle netzwerkspezifischen Kernel-Meldungen (darunter iptables-Meldungen) auch für die Einsichtnahme durch die root-User der Container preisgeben würde. Das würde u.a ein Ausspionieren der virtuellen Netzwerkumgebung und darauf aufbauend bestimmte Angriffsszenarien ermöglichen. Wenn wir überhaupt etwas im Container sehen, dann höchstens Meldungen zu selbst gesetzten Paketfilterregeln für die Container-spezifische NIC.

Zwischenfazit:

  • Wir dürfen uns in einer Container-Umgebung u.a. nicht darüber wundern, dass man bestimmte Kernel-Module vom Container aus erst gar nicht laden darf und z.B. lsmod eine vernünftige Antwort schuldig bleibt.
  • Wir dürfen uns nicht wundern, dass bestimmte sysctl-Befehle, die im Container abgesetzt werden, ggf. ignoriert werden.
  • Wir dürfen uns in einer Container-Umgebung nicht wundern, wenn man bestimmte Teile des systemd-Logs auf einem Container - und damit auf einem Strato-V-Server - nicht ggf. zu Gesicht bekommt. (Im Gegensatz zu einem KVM-Gast).

Der erste Punkt ist u.a. für den Betrieb der ufw relevant; s.u..

Bzgl. des zweiten Punktes ist zu beachten, dass OpenVZ, genauer der OpenVZ-Kernel, (network-) "Namespaces" nutzt. ("Namespaces" werden natürlich aber auch von aktuellen Linux-Kerneln unterstützt. Zu "Namespaces" siehe etwa
https://jvns.ca/blog/2016/10/10/what-even-is-a-container/
https://de.slideshare.net/jpetazzo/anatomy-of-a-container-namespaces-cgroups-some-filesystem-magic-linuxcon
https://openvz.org/WP/What_are_containers.

Deshalb lassen sich bestimmte Einstellung unterhalb von "/proc/sys" durchaus auch vom Container aus anpassen. Was in der jeweiligen OpenVZ-Umgebung erlaubt ist und was nicht, muss man ggf. durch Probieren herausfinden.

Den dritten Punkt werden wir in den nächsten Abschnitten für vServer kritisch hinterfragen.

Erste Konsequenzen für den Einsatz von "ufw"

Auch durch Probieren wird man herausfinden, dass "ufw" auch auf einem mit Debian 8 betriebenen vServer von Strato läuft - und man eigene iptables-Regeln problemfrei an den OpenVZ-Kernel weiterreichen kann.

Achtung:

Nach der Installation von ufw auf dem vServer NICHT unmittelbar "ufw enable" absetzen!! Zuerst den Port, auf dem man SSH betreibt, freischalten. Also etwa durch "ufw allow 22", wenn man den SSH-Standardport benutzt. Ihr wollt euch ja nicht durch Anschalten der Firewall selbst aussperren!

Wie man schnell (hier durch einen Blick in das systemd-Journal feststellt), ist der Start von ufw auf einem vServer - auch im Rahmen eines Systemstarts - mit ein paar Fehlermeldungen verbunden.

Apr 05 14:21:03 xxx.stratoserver.net ufw[147]: Starting firewall: ufw...modprobe: ERROR: ../libkmod/libkmod.c:557 kmod_search_moddep() could not ope
Apr 05 14:21:03 xxx.stratoserver.net ufw[147]: modprobe: ERROR: ../libkmod/libkmod.c:557 kmod_search_moddep() could not open moddep file '/lib/modul
Apr 05 14:21:03 xxx.stratoserver.net ufw[147]: modprobe: ERROR: ../libkmod/libkmod.c:557 kmod_search_moddep() could not open moddep file '/lib/modul
Apr 05 14:21:03 xxx.stratoserver.net systemd-journal[114]: Permanent journal is using 24.0M (max allowed 4.0G, trying to leave 4.0G free of 499.5G a
Apr 05 14:21:03 xxx.stratoserver.net systemd-journal[114]: Time spent on flushing to /var is 1.770ms for 8 entries.
Apr 05 14:21:03 xxx.stratoserver.net ufw[147]: sysctl: permission denied on key 'net.ipv4.tcp_sack'
Apr 05 14:21:03 xxx.stratoserver.net ufw[147]: Setting kernel variables (/etc/ufw/sysctl.conf)...done.

 
Diese Meldungen rühren u.a. daher, dass ufw mit Hilfe von modprobe versucht, bestimmte "conntrack"-Sub-Module zu laden. Zudem versucht ufw per sysctl Kernel-Parameter abzuändern. Vorgegeben sind diese Schritte in den Dateien "/etc/default/ufw" und "/etc/ufw/sysctl.conf".

Die genannten Fehler blockieren den Start aktueller ufw-Versionen aber nicht; wer sich dennoch an den Meldungen stört, kann die über Modifikationen der genannten Dateien, nämlich durch Auskommentieren der fehlerträchtigen Statements, verhindern. Siehe auch
https://www.hosteurope.de/faq/server/virtual-server/besonderheiten-firewall-virtual-server/; im Unterschied zu den dortigen Tipps aber beachten, dass auf dem vServer nur einer der sysctl-Befehle problematisch ist.)

Übrigens: Über das Starten von ufw bei einem Reboot des vServers muss man sich nach einem Absetzen von

systemctl enable ufw

keine Gedanken mehr machen. Debian 8 beinhaltet für ufw einen passenden LSB-Service, der beim Hochfahren ausgeführt wird.

Monitoring von ufw-iptables-Meldungen auf dem vServer mit Hilfe von dmesg

Nachdem man in systemd-Journal nichts findet: Gibt es andere Möglichkeiten, die LOG-Messages von ufw-/iptables zu verfolgen?

Da es sich um Kernel-Messages handelt, liegt ein versuchsweiser Blick auf den "dmesg"-Output nahe. Und tatsächlich - auf meinem vServer:

    
root@xxx:~ # dmesg
[1240949.664984] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=45.55.2.201 DST=xxx LEN=40 TOS=0x00 PREC=0x00 TTL=244 ID=54321 PROTO=TCP SPT=40788 DPT=3306 WINDOW=65535 RES=0x00 SYN URGP=0 
[1240954.051018] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=93.174.93.136 DST=xxx LEN=40 TOS=0x00 PREC=0x00 TTL=250 ID=4710 PROTO=TCP SPT=43745 DPT=3128 WINDOW=1024 RES=0x00 SYN URGP=0 
[1240986.448807] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=45.55.1.72 DST=xxx LEN=40 TOS=0x00 PREC=0x00 TTL=244 ID=54321 PROTO=TCP SPT=46822 DPT=1900 WINDOW=65535 RES=0x00 SYN URGP=0 
[1241002.495868] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=88.100.184.82 DST=xxx LEN=40 TOS=0x00 PREC=0x00 TTL=50 ID=13380 PROTO=TCP SPT=35180 DPT=23 WINDOW=44554 RES=0x00 SYN URGP=0 
[1241015.141452] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=89.163.144.224 DST=xxx LEN=445 TOS=0x00 PREC=0x00 TTL=57 ID=32820 DF PROTO=UDP SPT=5180 DPT=5046 LEN=425 
[1241132.233004] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=197.44.69.222 DST=xxx LEN=40 TOS=0x00 PREC=0x00 TTL=239 ID=44476 PROTO=TCP SPT=53226 DPT=1433 WINDOW=1024 RES=0x00 SYN URGP=0 
[1241145.520318] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=208.100.26.228 DST=xxx LEN=40 TOS=0x08 PREC=0x00 TTL=242 ID=51210 PROTO=TCP SPT=47975 DPT=15672 WINDOW=1024 RES=0x00 SYN URGP=0 
[1241185.158299] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=89.163.144.224 DST=xxx LEN=443 TOS=0x00 PREC=0x00 TTL=57 ID=56812 DF PROTO=UDP SPT=5400 DPT=4000 LEN=423 
[1241297.661764] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=186.45.130.20 DST=xxx LEN=40 TOS=0x00 PREC=0x00 TTL=241 ID=12134 PROTO=TCP SPT=63715 DPT=23 WINDOW=14600 RES=0x00 SYN URGP=0 
[1241350.742715] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=89.163.144.224 DST=xxx LEN=446 TOS=0x00 PREC=0x00 TTL=57 ID=14769 DF PROTO=UDP SPT=5320 DPT=5172 LEN=426 
[1241353.098569] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=5.53.113.195 DST=xxx LEN=40 TOS=0x00 PREC=0x00 TTL=51 ID=48667 PROTO=TCP SPT=46919 DPT=23 WINDOW=39535 RES=0x00 SYN URGP=0 
[1241377.620483] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=46.152.41.83 DST=xxx LEN=40 TOS=0x00 PREC=0x00 TTL=240 ID=40038 PROTO=TCP SPT=12600 DPT=23 WINDOW=14600 RES=0x00 SYN URGP=0 
[1241386.187457] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=122.114.187.140 DST=xxx LEN=40 TOS=0x00 PREC=0x00 TTL=238 ID=8477 PROTO=TCP SPT=46170 DPT=23 WINDOW=1024 RES=0x00 SYN URGP=0 
[1241437.193431] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=218.91.210.142 DST=xxx LEN=40 TOS=0x00 PREC=0x00 TTL=48 ID=4557 PROTO=TCP SPT=45821 DPT=23 WINDOW=27541 RES=0x00 SYN URGP=0 
[1241512.054090] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=89.163.144.224 DST=xxx LEN=443 TOS=0x00 PREC=0x00 TTL=57 ID=37720 DF PROTO=UDP SPT=5179 DPT=1028 LEN=423 
[1241553.246515] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=49.4.143.59 DST=xxx LEN=40 TOS=0x00 PREC=0x00 TTL=104 ID=256 PROTO=TCP SPT=6000 DPT=135 WINDOW=16384 RES=0x00 SYN URGP=0 
[1241632.706391] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=39.71.216.3 DST=xxx LEN=40 TOS=0x00 PREC=0x00 TTL=48 ID=4841 PROTO=TCP SPT=57398 DPT=22 WINDOW=55725 RES=0x00 SYN URGP=0 
[1241643.559480] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=196.202.5.43 DST=xxx LEN=44 TOS=0x00 PREC=0x00 TTL=48 ID=53691 PROTO=TCP SPT=34866 DPT=23 WINDOW=33710 RES=0x00 SYN URGP=0 
[1241674.241572] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=89.163.144.224 DST=xxx LEN=446 TOS=0x00 PREC=0x00 TTL=57 ID=60393 DF PROTO=UDP SPT=5288 DPT=1029 LEN=426 
[1241683.411659] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=124.167.232.138 DST=xxx LEN=60 TOS=0x00 PREC=0x00 TTL=47 ID=40536 DF PROTO=TCP SPT=57844 DPT=22 WINDOW=14600 RES=0x00 SYN URGP=0 
[1241686.407572] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=124.167.232.138 DST=xxx LEN=60 TOS=0x00 PREC=0x00 TTL=47 ID=40537 DF PROTO=TCP SPT=57844 DPT=22 WINDOW=14600 RES=0x00 SYN URGP=0   

 
Ja, die Welt ist schlecht - und wir tun offenbar gut daran, den Zugang zum Server zu blocken bzw. die Logs auch mal auszuwerten und später Blacklists einzusetzen. "fail2ban" zu konfigurieren schadet nebenbei auch nichts.

Wer periodische Updates des Outputs von dmesg ähnlich zu "tail -f" verfolgen will, probiere mal das Kommando

watch -n 0,2 "dmesg | tail -n $((LINES-6))"

in einem Terminal aus. (Ggf. das Terminalfenster etwas vergößern. Auf englischsprachigen Systemen "0.2" statt wie hier "0,2" ! Auf neueren Kerneln als dem der aktuellen vServer gibt es übrigens auch die dmesg-Option "-w").

Aber das eigentlich Feststellenswerte ist ja, dass wir überhaupt was sehen!

Natürlich ist das, was man unter OpenVZ unter dmesg zu Gesicht bekommt, eingeschränkt (s. etwa https://bugs.openvz.org/browse/OVZ-5328).
Aber:
Der OpenVZ-Kernel liefert dem Container zulässige, relevante Informationen in den lokalen Message-Ringpuffer, die dort von root eingesehen werden können. Darunter auch die ersehnten iptables-Meldungen!

Nun stellt sich die große Frage, wie systemd mit diesen Kernelmeldungen interagiert und warum das, was unter dmesg erschient, nicht ins Journal der OpenVZ-Container-Umgebung eingestellt wird.

Das Problematische an systemd ist, wie immer, dass man das ohne seitenweises Lesen in systemd Blogs etc. und/oder gar Codestudium vermutlich nicht beantworten kann. Logisch erscheint mir das Ganze jedenfalls nicht. OpenVZ sorgt offenbar für eine Reduktion der Kernelinformationen auf das, was root im Container sehen sollte. iptables-Meldungen zur lokalen NIC des Containers werden dabei nicht ausgespart. Sie sollten daher eigentlich auch im systemd-Journal erscheinen!

Monitoring mittels rsyslogd ? !

Durch den dmesg-Test ermutigt, fragte ich mich, was wohl passieren würde, wenn rsyslog auf dem vServer-Debian-System installiert und aktiviert wäre. Das ist insofern interessant, als systemd ja externe Linux System-Logging-Services über Schnittstellen bedient und trotzdem sein eigenes Journal weiter versorgt. Man loggt dann im Normalfall sozusagen zweimal ...

Eigentlich würde man nun erwarten, dass die Meldungen von dmesg auch in den verschiedenen Dateien, die der rsyslog-Dämon bedient, nicht auftauchen sollten. Weil systemd ja schon den Transfer in die eigene Binärdatei verweigert. Also machen wir mal die Probe:

root@xxx:~# apt-get rsyslog
root@xxx:~# systemctl start rsyslog
root@xxx:~# systemctl enable rsyslog

Wenn nun doch etwas passieren sollte, so müssten iptables-Meldungen als Einträge unter "/var/log/kern.log" und/oder in der von ufw vorgesehenen Datei "/var/log/ufw.log" auftauchen.

Und tatsächlich finden wir (wider Erwarten) nach einer Weile in "kern.log" iptables-LOG-Meldungen:

  
Apr  6 13:19:57 xxx kernel: [1245761.082097] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=118.163.90.134 DST=xxx LEN=40 TOS=0x00 PREC=0x00 TTL=48 ID=14764 PROTO=TCP SPT=33202 DPT=23 WINDOW=44186 RES=0x00 SYN URGP=0 
Apr  6 13:21:03 xxx kernel: [1245827.018789] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=85.90.163.248 DST=xxx LEN=44 TOS=0x00 PREC=0x00 TTL=52 ID=358 PROTO=TCP SPT=21965 DPT=23 WINDOW=12453 RES=0x00 SYN URGP=0 
Apr  6 13:21:16 xxx kernel: [1245840.027789] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=89.163.144.224 DST=xxx LEN=445 TOS=0x00 PREC=0x00 TTL=57 ID=61654 DF PROTO=UDP SPT=5201 DPT=4011 LEN=425 
Apr  6 13:22:26 xxx kernel: [1245910.326051] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=91.98.36.115 DST=xxx LEN=40 TOS=0x00 PREC=0x00 TTL=46 ID=3739 PROTO=TCP SPT=31242 DPT=23 WINDOW=22306 RES=0x00 SYN URGP=0 
Apr  6 13:23:13 xxx kernel: [1245957.077099] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=117.193.182.117 DST=xxx LEN=40 TOS=0x00 PREC=0x00 TTL=48 ID=29137 PROTO=TCP SPT=12209 DPT=22 WINDOW=52845 RES=0x00 SYN URGP=0 
Apr  6 13:23:54 xxx kernel: [1245997.536218] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=45.55.1.114 DST=xxx LEN=40 TOS=0x00 PREC=0x00 TTL=244 ID=54321 PROTO=TCP SPT=43185 DPT=8123 WINDOW=65535 RES=0x00 SYN URGP=0 
Apr  6 13:23:56 xxx kernel: [1246000.108495] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=192.151.169.29 DST=xxx LEN=40 TOS=0x00 PREC=0x00 TTL=51 ID=46742 PROTO=TCP SPT=54014 DPT=23 WINDOW=49390 RES=0x00 SYN URGP=0 
Apr  6 13:24:05 xxx kernel: [1246008.982092] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=89.163.144.224 DST=xxx LEN=445 TOS=0x00 PREC=0x00 TTL=57 ID=19866 DF PROTO=UDP SPT=5391 DPT=4012 LEN=425 
Apr  6 13:24:08 xxx kernel: [1246011.450635] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=163.172.204.214 DST=xxx LEN=447 TOS=0x00 PREC=0x00 TTL=58 ID=25411 DF PROTO=UDP SPT=5440 DPT=5060 LEN=427 
Apr  6 13:24:18 xxx kernel: [1246022.133966] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=181.193.99.26 DST=xxx LEN=40 TOS=0x00 PREC=0x00 TTL=48 ID=47683 PROTO=TCP SPT=36520 DPT=23 WINDOW=41856 RES=0x00 SYN URGP=0 
Apr  6 13:24:29 xxx kernel: [1246032.599018] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=89.248.166.146 DST=xxx LEN=48 TOS=0x00 PREC=0x00 TTL=123 ID=26103 PROTO=TCP SPT=11206 DPT=2083 WINDOW=65535 RES=0x00 SYN URGP=0 
Apr  6 13:24:50 xxx kernel: [1246053.507827] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=71.165.26.106 DST=xxx LEN=40 TOS=0x00 PREC=0x00 TTL=50 ID=381 PROTO=TCP SPT=29725 DPT=23 WINDOW=3178 RES=0x00 SYN URGP=0 
Apr  6 13:25:44 xxx kernel: [1246108.065452] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=139.162.118.251 DST=xxx LEN=40 TOS=0x00 PREC=0x00 TTL=246 ID=54321 PROTO=TCP SPT=56219 DPT=6379 WINDOW=65535 RES=0x00 SYN URGP=0 
Apr  6 13:26:16 xxx kernel: [1246139.839711] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=174.16.249.159 DST=xxx LEN=40 TOS=0x00 PREC=0x00 TTL=240 ID=54734 PROTO=TCP SPT=43074 DPT=23 WINDOW=14600 RES=0x00 SYN URGP=0 
Apr  6 13:26:28 xxx kernel: [1246151.805797] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=117.1.220.212 DST=xxx LEN=44 TOS=0x00 PREC=0x00 TTL=242 ID=2085 PROTO=TCP SPT=14216 DPT=5358 WINDOW=14600 RES=0x00 SYN URGP=0 
Apr  6 13:26:50 xxx kernel: [1246174.013725] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=123.151.42.61 DST=xxx LEN=135 TOS=0x00 PREC=0x00 TTL=47 ID=32696 PROTO=UDP SPT=9019 DPT=1701 LEN=115 
Apr  6 13:27:01 xxx kernel: [1246184.993843] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=89.163.144.224 DST=xxx LEN=445 TOS=0x00 PREC=0x00 TTL=57 ID=44551 DF PROTO=UDP SPT=5365 DPT=4013 LEN=425 
Apr  6 13:27:27 xxx kernel: [1246211.300971] [UFW BLOCK] IN=venet0 OUT= MAC= SRC=89.120.177.89 DST=xxx LEN=44 TOS=0x00 PREC=0x00 TTL=55 ID=64605 PROTO=TCP SPT=59589 DPT=23 WINDOW=64213 RES=0x00 SYN URGP=0 

 
Die Welt ist inzwischen nicht besser geworden, aber nun können wir das Schlechte wenigstens mal verfolgen. (Dieselben Einträge erscheinen übrigens auch in ufw.log).

Tja, nicht alles im Leben mit systemd ist offenbar nachvollziehbar ....

Fazit

Das erwartete native Zusammenspiel zwischen einem Strato OpenVZ vServer und systemd unter Debian 8 funktioniert bzgl. der Protokollierung der LOG-Target-Meldungen von iptables nicht. Kernel-Meldungen zu iptables-Rules für die Container-NIC erschienen nicht im Journal von systemd.

Workarounds bestehen darin

  • den Output von dmesg kontinuierlich per Skript abzufragen und in eine Datei umzulenken.
  • rsyslog zu installieren und die Arbeit dem Zusammenspiel von systemd mit dem rsyslog-Dämon zu überlassen. Man protokolliert dann doppelt, aber man erhält wenigstens dauerhafte Log-Protokolle, die jeder sicherheitsbewußte Admin zur vorsorglichen Gefahrenabwehr benötigt.

Da die gewünschten Kernel-Meldungen bei gleicher Debian- und Systemd-Version in einem KVM-Gast erscheinen, ist das Problem mit dem systemd-Journal entweder

  • auf einen Fehler oder ein Sicherheitsfeature der OpenVZ-Umgebung,
  • oder auf ein seltsames (gewolltes oder fehlerhaftes) Zusammenspiel des OpenVZ-Kernels mit systemd in den Container-Umgebungen,
  • oder schlicht auf ein fehlerhaftes, bislang nicht erkanntes/bedachtes Verhalten von systemd in einem OpenVZ-Container

zurückzuführen.

Für letzteres spricht die Tatsache, dass der OpenVZ-Kernel iptables-Meldungen zur Container-NIC unter dmesg offenbart und dass systemd die Meldungen, die unter dmesg auftauchen wohl korrekt an weitere System-Logging-Services wie rsyslog weiterleitet.

Eine entsprechende Anfrage bei Strato, die hoffentlich Virtuozzo einschalten, läuft.

Das Fehlen von iptables-Log-Protokolle ist im Sinne der ISO 27000 (Strato hat da ein Zertifikat!) zudem als Sicherheitsproblem einzustufen, das Kunden kommentarlos zugemutet wird und von diesen Kunden selbst gelöst werden muss.

Weiterführende Links

Fehlende Einträge im systemd-Journal
http://linux.debian.user.german.narkive.com/8AbyxJTP/keine-eintrage-von-dmesg-im-journal-systemd

Container, Virtuozzo, OpenVZ und iptables, ufw
http://forum.openvirtuozzo.org/index.php?t=msg&goto=37264&&srch=container
https://openvz.org/Setting_up_an_iptables_firewall
http://askubuntu.com/questions/399624/ubuntu-server-12-04-and-ufw-failure-on-startup-and-several-module-not-found-err
https://www.hosteurope.de/faq/server/virtual-server/besonderheiten-firewall-virtual-server/
https://superuser.com/questions/659236/permission-denied-when-setting-values-in-sysctl-on-ubuntu-12-04
https://help.ubuntu.com/community/UFW
https://help.virtuozzo.com/customer/en/portal/articles/2509437?_ga=1.206607316.635252319.1491384754
ab S. 317 in folgender Referenz
http://www.odin.com/fileadmin/parallels/documents/hosting-cloud-enablement/pvc/Production_Documents/VzLinuxUG_03132013.pdf
https://bugs.openvz.org/browse/OVZ-5328

Namespaces
http://www.netdevconf.org/1.1/proceedings/slides/rosen-namespaces-cgroups-lxc.pdf

LXC vs. OpenVZ
https://www.janoszen.com/2013/01/22/lxc-vs-openvz/
https://en.wikipedia.org/wiki/LXC
https://openvz.org/Comparison

OpenVZ integrates KVM/Qemu
http://openvz.livejournal.com/tag/criu
https://www.heise.de/ix/meldung/Virtualisierungsplattform-OpenVZ-wird-eigenstaendige-Distribution-3278115.html
https://openvz.org/Virtuozzo
https://openvz.org/QEMU
https://www.heise.de/ix/meldung/Virtualisierungsplattform-OpenVZ-wird-eigenstaendige-Distribution-3278115.html
https://openvz.org/FAQ
https://virtuozzo.com/virtual-machines-in-virtuozzo-7/
https://openvz.org/WP/What_are_containers#Networking

Virtualisierungsangebote in D - Vergleich
https://timreeves.de/trip-content/uploads/dokumente/Internet-Mietserver-Typen_im-Vergleich.pdf

Watch dmesg Output
http://unix.stackexchange.com/questions/95842/how-can-i-see-dmesg-output-as-it-changes

Linux bridges – can iptables be used against MiM attacks based on ARP spoofing ? – III

This small series of blog contributions was written to understand a little better how to use iptables in the context of Linux bridges as a countermeasure against some of the effects of a man-in-the-middle [MiM] attack based on ARP spoofing. The attacking system as well as the attacked systems are in our scenarios attached to Linux bridge ports. My objective was to block redirected TCP/IP packets to the the attacking system.

In the first article
Linux bridges – can iptables be used against MiM attacks based on ARP spoofing ? – I
we had discussed how we have to set up iptables rules for ports of a single Linux bridge and their associated IP-addresses to get the desired blocking. We found that a certain order of DENY and ACCEPT rules is required.

In the second article
Linux bridges – can iptables be used against MiM attacks based on ARP spoofing ? – II
we investigated how iptables reacts to the existence of multiple and linked Linux bridges on one and the same hast. We defined "border ports" as ports that connect a Linux bridge to other bridges, to extended external network segments or to the virtualization host itself - but not to guests directly attached to the bridge via tap or veth-devices. "Border ports" may be passed by packets traveling to their destination across multiple bridges. We then extended our previous considerations on iptables rules to such "border ports" and found a general recipe for the order of the required DENY and ACCEPT rules for the ports of the multiple bridges.

In this article we shall test the required rules for the bridge test setup presented in the previous article. We consider some examples of attack variations with respect to the 2 bridges and ICMP packets. However, the tests would also work for any TCP based service. The reason is that the central DENY rules are very general and compiled without reference to any specific service type.

We assume that you have had a look at the screenshots of the logical rules displayed in a FWbuilder interface in the last article (II).

Setup and iptables rules created by FWbuilder

See the following drawing for the setup of our test scenario:

bridge3

The general DENY rules and the ICMP-related ACCEPT rules displayed in the last article are compiled by FWbuilder to create the following script commands:


    # Rule 2 (vk63)
    # 
    echo "Rule 2 (vk63)"
    # 
    # virbr6 guest port
    $IPTABLES -N Out_RULE_2
    $IPTABLES -A FORWARD -m physdev --physdev-is-bridged --physdev-out vk63 !  -d 192.168.50.13   -j Out_RULE_2
    $IPTABLES -A Out_RULE_2  -j LOG  --log-level info --log-prefix "RULE 2 -- DENY "
    $IPTABLES -A Out_RULE_2  -j DROP
    # 
    # Rule 3 (vk64)
    # 
    echo "Rule 3 (vk64)"
    # 
    # virbr6 guest port
    $IPTABLES -N Out_RULE_3
    $IPTABLES -A FORWARD -m physdev --physdev-is-bridged --physdev-out vk64 !  -d 192.168.50.14   -j Out_RULE_3
    $IPTABLES -A Out_RULE_3  -j LOG  --log-level info --log-prefix "RULE 3 -- DENY "
    $IPTABLES -A Out_RULE_3  -j DROP
    # 
    # Rule 4 (vk65)
    # 
    echo "Rule 4 (vk65)"
    # 
    # virbr6 guest port
    $IPTABLES -N Out_RULE_4
    $IPTABLES -A FORWARD -m physdev --physdev-is-bridged --physdev-out vk65 !  -d 192.168.50.15   -j Out_RULE_4
    $IPTABLES -A Out_RULE_4  -j LOG  --log-level info --log-prefix "RULE 4 -- DENY "
    $IPTABLES -A Out_RULE_4  -j DROP
    # 
    # Rule 5 (vk42)
    # 
    echo "Rule 5 (vk42)"
    # 
    # virbr4 guest port
    $IPTABLES -N Out_RULE_5
    $IPTABLES -A FORWARD -m physdev --physdev-is-bridged --physdev-out vk42 !  -d 192.168.50.12   -j Out_RULE_5
    $IPTABLES -A Out_RULE_5  -j LOG  --log-level info --log-prefix "RULE 5 -- DENY "
    $IPTABLES -A Out_RULE_5  -j DROP
    # 
    # Rule 6 (vk63)
    # 
    echo "Rule 6 (vk63)"
    # 
    # virbr6 guest port
    $IPTABLES -N Out_RULE_6
    $IPTABLES -A FORWARD -m physdev --physdev-is-bridged --physdev-out vk63  -s 192.168.50.13   -j Out_RULE_6
    $IPTABLES -A Out_RULE_6  -j LOG  --log-level info --log-prefix "RULE 6 -- DENY "
    $IPTABLES -A Out_RULE_6  -j DROP
    # 
    # Rule 7 (vk64)
    # 
    echo "Rule 7 (vk64)"
    # 
    # virbr6 guest port
    $IPTABLES -N Out_RULE_7
    $IPTABLES -A FORWARD -m physdev --physdev-is-bridged --physdev-out vk64  -s 192.168.50.14   -j Out_RULE_7
    $IPTABLES -A Out_RULE_7  -j LOG  --log-level info --log-prefix "RULE 7 -- DENY "
    $IPTABLES -A Out_RULE_7  -j DROP
    # 
    # Rule 8 (vk65)
    # 
    echo "Rule 8 (vk65)"
    # 
    # virbr6 guest port
    $IPTABLES -N Out_RULE_8
    $IPTABLES -A FORWARD -m physdev --physdev-is-bridged --physdev-out vk65  -s 192.168.50.15   -j Out_RULE_8
    $IPTABLES -A Out_RULE_8  -j LOG  --log-level info --log-prefix "RULE 8 -- DENY "
    $IPTABLES -A Out_RULE_8  -j DROP
    # 
    # Rule 9 (vk42)
    # 
    echo "Rule 9 (vk42)"
    # 
    # virbr4 guest port
    $IPTABLES -N Out_RULE_9
    $IPTABLES -A FORWARD -m physdev --physdev-is-bridged --physdev-out vk42  -s 192.168.50.12   -j Out_RULE_9
    $IPTABLES -A Out_RULE_9  -j LOG  --log-level info --log-prefix "RULE 9 -- DENY "
    $IPTABLES -A Out_RULE_9  -j DROP
    # 
    # Rule 10 (vk63)
    # 
    echo "Rule 10 (vk63)"
    # 
    # virbr6 guest port
    $IPTABLES -N In_RULE_10
    $IPTABLES -A INPUT -m physdev --physdev-in vk63 !  -s 192.168.50.13   -j In_RULE_10
    $IPTABLES -A FORWARD -m physdev --physdev-in vk63 !  -s 192.168.50.13   -j In_RULE_10
    $IPTABLES -A In_RULE_10  -j LOG  --log-level info --log-prefix "RULE 10 -- DENY "
    $IPTABLES -A In_RULE_10  -j DROP
    # 
    # Rule 11 (vk64)
    # 
    echo "Rule 11 (vk64)"
    # 
    # virbr6 guest port
    $IPTABLES -N In_RULE_11
    $IPTABLES -A INPUT -m physdev --physdev-in vk64 !  -s 192.168.50.14   -j In_RULE_11
    $IPTABLES -A FORWARD -m physdev --physdev-in vk64 !  -s 192.168.50.14   -j In_RULE_11
    $IPTABLES -A In_RULE_11  -j LOG  --log-level info --log-prefix "RULE 11 -- DENY "
    $IPTABLES -A In_RULE_11  -j DROP
    # 
    # Rule 12 (vk65)
    # 
    echo "Rule 12 (vk65)"
    # 
    # virbr6 guest port
    $IPTABLES -N In_RULE_12
    $IPTABLES -A INPUT -m physdev --physdev-in vk65 !  -s 192.168.50.15   -j In_RULE_12
    $IPTABLES -A FORWARD -m physdev --physdev-in vk65 !  -s 192.168.50.15   -j In_RULE_12
    $IPTABLES -A In_RULE_12  -j LOG  --log-level info --log-prefix "RULE 12 -- DENY "
    $IPTABLES -A In_RULE_12  -j DROP
    # 
    # Rule 13 (vk42)
    # 
    echo "Rule 13 (vk42)"
    # 
    # virbr4 guest port
    $IPTABLES -N In_RULE_13
    $IPTABLES -A INPUT -m physdev --physdev-in vk42 !  -s 192.168.50.12   -j In_RULE_13
    $IPTABLES -A FORWARD -m physdev --physdev-in vk42 !  -s 192.168.50.12   -j In_RULE_13
    $IPTABLES -A In_RULE_13  -j LOG  --log-level info --log-prefix "RULE 13 -- DENY "
    $IPTABLES -A In_RULE_13  -j DROP
    # 
    # Rule 15 (vethb2)
    # 
    echo "Rule 15 (vethb2)"
    # 
    # br6 border out
    $IPTABLES -N Cid7404X2034.0
    $IPTABLES -A FORWARD -m physdev --physdev-is-bridged --physdev-out vethb2  -j Cid7404X2034.0
    $IPTABLES -A Cid7404X2034.0  -s 192.168.50.13   -j RETURN
    $IPTABLES -A Cid7404X2034.0  -s 192.168.50.14   -j RETURN
    $IPTABLES -A Cid7404X2034.0  -s 192.168.50.15   -j RETURN
    $IPTABLES -N Out_RULE_15_3
    $IPTABLES -A Cid7404X2034.0  -j Out_RULE_15_3
    $IPTABLES -A Out_RULE_15_3  -j LOG  --log-level info --log-prefix "RULE 15 -- DENY "
    $IPTABLES -A Out_RULE_15_3  -j DROP
    # 
    # Rule 16 (vethb2)
    # 
    echo "Rule 16 (vethb2)"
    # 
    # br6 border out
    $IPTABLES -N Cid7478X2034.0
    $IPTABLES -A FORWARD -m physdev --physdev-is-bridged --physdev-out vethb2  -j Cid7478X2034.0
    $IPTABLES -A Cid7478X2034.0  -d 192.168.50.1   -j RETURN
    $IPTABLES -A Cid7478X2034.0  -d 192.168.0.37   -j RETURN
    $IPTABLES -A Cid7478X2034.0  -d 192.168.50.12   -j RETURN
    $IPTABLES -N Out_RULE_16_3
    $IPTABLES -A Cid7478X2034.0  -j Out_RULE_16_3
    $IPTABLES -A Out_RULE_16_3  -j LOG  --log-level info --log-prefix "RULE 16 -- DENY "
    $IPTABLES -A Out_RULE_16_3  -j DROP
    # 
    # Rule 17 (vethb1)
    # 
    echo "Rule 17 (vethb1)"
    # 
    # br4 border out
    $IPTABLES -N Cid8637X2034.0
    $IPTABLES -A FORWARD -m physdev --physdev-is-bridged --physdev-out vethb1  -j Cid8637X2034.0
    $IPTABLES -A Cid8637X2034.0  -s 192.168.50.1   -j RETURN
    $IPTABLES -A Cid8637X2034.0  -s 192.168.0.37   -j RETURN
    $IPTABLES -A Cid8637X2034.0  -s 192.168.50.12   -j RETURN
    $IPTABLES -N Out_RULE_17_3
    $IPTABLES -A Cid8637X2034.0  -j Out_RULE_17_3
    $IPTABLES -A Out_RULE_17_3  -j LOG  --log-level info --log-prefix "RULE 17 -- DENY "
    $IPTABLES -A Out_RULE_17_3  -j DROP
    # 
    # Rule 18 (vethb1)
    # 
    echo "Rule 18 (vethb1)"
    # 
    # br4 border out
    $IPTABLES -N Cid8753X2034.0
    $IPTABLES -A FORWARD -m physdev --physdev-is-bridged --physdev-out vethb1  -j Cid8753X2034.0
    $IPTABLES -A Cid8753X2034.0  -d 192.168.50.13   -j RETURN
    $IPTABLES -A Cid8753X2034.0  -d 192.168.50.14   -j RETURN
    $IPTABLES -A Cid8753X2034.0  -d 192.168.50.15   -j RETURN
    $IPTABLES -N Out_RULE_18_3
    $IPTABLES -A Cid8753X2034.0  -j Out_RULE_18_3
    $IPTABLES -A Out_RULE_18_3  -j LOG  --log-level info --log-prefix "RULE 18 -- DENY "
    $IPTABLES -A Out_RULE_18_3  -j DROP
    # 
    # Rule 19 (vmh1)
    # 
    echo "Rule 19 (vmh1)"
    # 
    # br4 border out
    $IPTABLES -N Cid8374X2034.0
    $IPTABLES -A FORWARD -m physdev --physdev-is-bridged --physdev-out vmh1  -j Cid8374X2034.0
    $IPTABLES -A Cid8374X2034.0  -s 192.168.50.12   -j RETURN
    $IPTABLES -A Cid8374X2034.0  -s 192.168.50.13   -j RETURN
    $IPTABLES -A Cid8374X2034.0  -s 192.168.50.14   -j RETURN
    $IPTABLES -A Cid8374X2034.0  -s 192.168.50.15   -j RETURN
    $IPTABLES -N Out_RULE_19_3
    $IPTABLES -A Cid8374X2034.0  -j Out_RULE_19_3
    $IPTABLES -A Out_RULE_19_3  -j LOG  --log-level info --log-prefix "RULE 19 -- DENY "
    $IPTABLES -A Out_RULE_19_3  -j DROP
    # 
    # Rule 20 (vmh1)
    # 
    echo "Rule 20 (vmh1)"
    # 
    # br4 border out
    $IPTABLES -N Cid8530X2034.0
    $IPTABLES -A FORWARD -m physdev --physdev-is-bridged --physdev-out vmh1  -j Cid8530X2034.0
    $IPTABLES -A Cid8530X2034.0  -d 192.168.50.1   -j RETURN
    $IPTABLES -A Cid8530X2034.0  -d 192.168.0.37   -j RETURN
    $IPTABLES -N Out_RULE_20_3
    $IPTABLES -A Cid8530X2034.0  -j Out_RULE_20_3
    $IPTABLES -A Out_RULE_20_3  -j LOG  --log-level info --log-prefix "RULE 20 -- DENY "
    $IPTABLES -A Out_RULE_20_3  -j DROP
    # 
    # Rule 22 (vethb2)
    # 
    echo "Rule 22 (vethb2)"
    # 
    # br6 border IN
    $IPTABLES -N Cid7917X2034.0
    $IPTABLES -A INPUT -m physdev --physdev-in vethb2  -j Cid7917X2034.0
    $IPTABLES -A FORWARD -m physdev --physdev-in vethb2  -j Cid7917X2034.0
    $IPTABLES -A Cid7917X2034.0  -d 192.168.50.13   -j RETURN
    $IPTABLES -A Cid7917X2034.0  -d 192.168.50.14   -j RETURN
    $IPTABLES -A Cid7917X2034.0  -d 192.168.50.15   -j RETURN
    $IPTABLES -N In_RULE_22_3
    $IPTABLES -A Cid7917X2034.0  -j In_RULE_22_3
    $IPTABLES -A In_RULE_22_3  -j LOG  --log-level info --log-prefix "RULE 22 -- DENY "
    $IPTABLES -A In_RULE_22_3  -j DROP
    # 
    # Rule 23 (vethb2)
    # 
    echo "Rule 23 (vethb2)"
    # 
    # br6 border IN
    $IPTABLES -N Cid8013X2034.0
    $IPTABLES -A INPUT -m physdev --physdev-in vethb2  -j Cid8013X2034.0
    $IPTABLES -A FORWARD -m physdev --physdev-in vethb2  -j Cid8013X2034.0
    $IPTABLES -A Cid8013X2034.0  -s 192.168.50.1   -j RETURN
    $IPTABLES -A Cid8013X2034.0  -s 192.168.0.37   -j RETURN
    $IPTABLES -A Cid8013X2034.0  -s 192.168.50.12   -j RETURN
    $IPTABLES -N In_RULE_23_3
    $IPTABLES -A Cid8013X2034.0  -j In_RULE_23_3
    $IPTABLES -A In_RULE_23_3  -j LOG  --log-level info --log-prefix "RULE 23 -- DENY "
    $IPTABLES -A In_RULE_23_3  -j DROP
    # 
    # Rule 24 (vethb1)
    # 
    echo "Rule 24 (vethb1)"
    # 
    # br4 border IN
    $IPTABLES -N Cid7639X2034.0
    $IPTABLES -A INPUT -m physdev --physdev-in vethb1  -j Cid7639X2034.0
    $IPTABLES -A FORWARD -m physdev --physdev-in vethb1  -j Cid7639X2034.0
    $IPTABLES -A Cid7639X2034.0  -s 192.168.50.13   -j RETURN
    $IPTABLES -A Cid7639X2034.0  -s 192.168.50.14   -j RETURN
    $IPTABLES -A Cid7639X2034.0  -s 192.168.50.15   -j RETURN
    $IPTABLES -N In_RULE_24_3
    $IPTABLES -A Cid7639X2034.0  -j In_RULE_24_3
    $IPTABLES -A In_RULE_24_3  -j LOG  --log-level info --log-prefix "RULE 24 -- DENY "
    $IPTABLES -A In_RULE_24_3  -j DROP
    # 
    # Rule 25 (vethb1)
    # 
    echo "Rule 25 (vethb1)"
    # 
    # br4 border IN
    $IPTABLES -N Cid7736X2034.0
    $IPTABLES -A INPUT -m physdev --physdev-in vethb1  -j Cid7736X2034.0
    $IPTABLES -A FORWARD -m physdev --physdev-in vethb1  -j Cid7736X2034.0
    $IPTABLES -A Cid7736X2034.0  -d 192.168.50.1   -j RETURN
    $IPTABLES -A Cid7736X2034.0  -d 192.168.0.37   -j RETURN
    $IPTABLES -A Cid7736X2034.0  -d 192.168.50.12   -j RETURN
    $IPTABLES -N In_RULE_25_3
    $IPTABLES -A Cid7736X2034.0  -j In_RULE_25_3
    $IPTABLES -A In_RULE_25_3  -j LOG  --log-level info --log-prefix "RULE 25 -- DENY "
    $IPTABLES -A In_RULE_25_3  -j DROP
    # 
    # Rule 26 (vmh1)
    # 
    echo "Rule 26 (vmh1)"
    # 
    # br4 border IN
    $IPTABLES -N Cid8881X2034.0
    $IPTABLES -A INPUT -m physdev --physdev-in vmh1  -j Cid8881X2034.0
    $IPTABLES -A FORWARD -m physdev --physdev-in vmh1  -j Cid8881X2034.0
    $IPTABLES -A Cid8881X2034.0  -s 192.168.50.1   -j RETURN
    $IPTABLES -A Cid8881X2034.0  -s 192.168.0.37   -j RETURN
    $IPTABLES -N In_RULE_26_3
    $IPTABLES -A Cid8881X2034.0  -j In_RULE_26_3
    $IPTABLES -A In_RULE_26_3  -j LOG  --log-level info --log-prefix "RULE 26 -- DENY "
    $IPTABLES -A In_RULE_26_3  -j DROP
    # 
    # Rule 27 (vmh1)
    # 
    echo "Rule 27 (vmh1)"
    # 
    # br4 border IN
    $IPTABLES -N Cid9010X2034.0
    $IPTABLES -A INPUT -m physdev --physdev-in vmh1  -j Cid9010X2034.0
    $IPTABLES -A FORWARD -m physdev --physdev-in vmh1  -j Cid9010X2034.0
    $IPTABLES -A Cid9010X2034.0  -d 192.168.50.12   -j RETURN
    $IPTABLES -A Cid9010X2034.0  -d 192.168.50.13   -j RETURN
    $IPTABLES -A Cid9010X2034.0  -d 192.168.50.14   -j RETURN
    $IPTABLES -A Cid9010X2034.0  -d 192.168.50.15   -j RETURN
    $IPTABLES -N In_RULE_27_3
    $IPTABLES -A Cid9010X2034.0  -j In_RULE_27_3
    $IPTABLES -A In_RULE_27_3  -j LOG  --log-level info --log-prefix "RULE 27 -- DENY "
    $IPTABLES -A In_RULE_27_3  -j DROP
    # 
    # Rule 29 (vmh2)
    # 
    echo "Rule 29 (vmh2)"
    # 
    # host OUT
    $IPTABLES -N Cid10297X2034.0
    $IPTABLES -A OUTPUT -o vmh2   -s 192.168.0.19   -j Cid10297X2034.0
    $IPTABLES -A OUTPUT -o vmh2   -s 192.168.50.1   -j Cid10297X2034.0
    $IPTABLES -A Cid10297X2034.0  -d 192.168.50.12   -j RETURN
    $IPTABLES -A Cid10297X2034.0  -d 192.168.50.13   -j RETURN
    $IPTABLES -A Cid10297X2034.0  -d 192.168.50.14   -j RETURN
    $IPTABLES -A Cid10297X2034.0  -d 192.168.50.15   -j RETURN
    $IPTABLES -N Out_RULE_29_3
    $IPTABLES -A Cid10297X2034.0  -j Out_RULE_29_3
    $IPTABLES -A Out_RULE_29_3  -j LOG  --log-level info --log-prefix "RULE 29 -- DENY "
    $IPTABLES -A Out_RULE_29_3  -j DROP
    # 
    # Rule 30 (vmh2)
    # 
    echo "Rule 30 (vmh2)"
    # 
    # host IN
    $IPTABLES -N Cid10437X2034.0
    $IPTABLES -A INPUT -i vmh2   -d 192.168.0.19   -j Cid10437X2034.0
    $IPTABLES -A INPUT -i vmh2   -d 192.168.50.1   -j Cid10437X2034.0
    $IPTABLES -A FORWARD -i vmh2   -d 192.168.0.37   -j Cid10437X2034.0
    $IPTABLES -A Cid10437X2034.0  -s 192.168.50.12   -j RETURN
    $IPTABLES -A Cid10437X2034.0  -s 192.168.50.13   -j RETURN
    $IPTABLES -A Cid10437X2034.0  -s 192.168.50.14   -j RETURN
    $IPTABLES -A Cid10437X2034.0  -s 192.168.50.15   -j RETURN
    $IPTABLES -N In_RULE_30_3
    $IPTABLES -A Cid10437X2034.0  -j In_RULE_30_3
    $IPTABLES -A In_RULE_30_3  -j LOG  --log-level info --log-prefix "RULE 30 -- DENY "
    $IPTABLES -A In_RULE_30_3  -j DROP
    # 
    # Rule 32 (vk63)
    # 
    echo "Rule 32 (vk63)"
    # 
    # br6 IN
    $IPTABLES -N In_RULE_32
    $IPTABLES -A INPUT -m physdev --physdev-in vk63 -p icmp  -m icmp  -s 192.168.50.13   --icmp-type any  -m state --state NEW  -j In_RULE_32
    $IPTABLES -A FORWARD -m physdev --physdev-in vk63 -p icmp  -m icmp  -s 192.168.50.13   --icmp-type any  -m state --state NEW  -j In_RULE_32
    $IPTABLES -A In_RULE_32  -j LOG  --log-level info --log-prefix "RULE 32 -- ACCEPT "
    $IPTABLES -A In_RULE_32  -j ACCEPT
    # 
    # Rule 33 (vk64)
    # 
    echo "Rule 33 (vk64)"
    # 
    # br6 IN
    $IPTABLES -N In_RULE_33
    $IPTABLES -A INPUT -m physdev --physdev-in vk64 -p icmp  -m icmp  -s 192.168.50.14   --icmp-type any  -m state --state NEW  -j In_RULE_33
    $IPTABLES -A FORWARD -m physdev --physdev-in vk64 -p icmp  -m icmp  -s 192.168.50.14   --icmp-type any  -m state --state NEW  -j In_RULE_33
    $IPTABLES -A In_RULE_33  -j LOG  --log-level info --log-prefix "RULE 33 -- ACCEPT "
    $IPTABLES -A In_RULE_33  -j ACCEPT
    # 
    # Rule 34 (vk64)
    # 
    echo "Rule 34 (vk64)"
    # 
    # br6 IN HTTP
    $IPTABLES -N In_RULE_34
    $IPTABLES -A FORWARD -m physdev --physdev-in vk64 -p tcp -m tcp  -m multiport  -s 192.168.50.14   -d 192.168.0.37   --dports 80,443  -m state --state NEW  -j In_RULE_34
    $IPTABLES -A In_RULE_34  -j LOG  --log-level info --log-prefix "RULE 34 -- ACCEPT "
    $IPTABLES -A In_RULE_34  -j ACCEPT
    # 
    # Rule 35 (vk65)
    # 
    echo "Rule 35 (vk65)"
    # 
    # br6 IN
    $IPTABLES -N In_RULE_35
    $IPTABLES -A INPUT -m physdev --physdev-in vk65 -p icmp  -m icmp  -s 192.168.50.15   --icmp-type any  -m state --state NEW  -j In_RULE_35
    $IPTABLES -A FORWARD -m physdev --physdev-in vk65 -p icmp  -m icmp  -s 192.168.50.15   --icmp-type any  -m state --state NEW  -j In_RULE_35
    $IPTABLES -A In_RULE_35  -j LOG  --log-level info --log-prefix "RULE 35 -- ACCEPT "
    $IPTABLES -A In_RULE_35  -j ACCEPT
    # 
    # Rule 36 (vethb2)
    # 
    echo "Rule 36 (vethb2)"
    # 
    # br6 border IN
    $IPTABLES -N Cid9698X2034.0
    $IPTABLES -A FORWARD -m physdev --physdev-in vethb2 -p icmp  -m icmp  -s 192.168.50.1   --icmp-type any  -m state --state NEW  -j Cid9698X2034.0
    $IPTABLES -N In_RULE_36
    $IPTABLES -A Cid9698X2034.0  -d 192.168.50.13   -j In_RULE_36
    $IPTABLES -A Cid9698X2034.0  -d 192.168.50.14   -j In_RULE_36
    $IPTABLES -A Cid9698X2034.0  -d 192.168.50.15   -j In_RULE_36
    $IPTABLES -N Cid9698X2034.1
    $IPTABLES -A FORWARD -m physdev --physdev-in vethb2 -p icmp  -m icmp  -s 192.168.50.1   --icmp-type any  -m state --state NEW  -j Cid9698X2034.1
    $IPTABLES -A Cid9698X2034.1  -d 192.168.50.13   -j In_RULE_36
    $IPTABLES -A Cid9698X2034.1  -d 192.168.50.14   -j In_RULE_36
    $IPTABLES -A Cid9698X2034.1  -d 192.168.50.15   -j In_RULE_36
    $IPTABLES -N Cid9698X2034.2
    $IPTABLES -A FORWARD -m physdev --physdev-in vethb2 -p icmp  -m icmp  --icmp-type any  -m state --state NEW  -j Cid9698X2034.2
    $IPTABLES -N Cid9698X2034.3
    $IPTABLES -A Cid9698X2034.2  -s 192.168.0.37   -j Cid9698X2034.3
    $IPTABLES -A Cid9698X2034.2  -s 192.168.50.12   -j Cid9698X2034.3
    $IPTABLES -A Cid9698X2034.3  -d 192.168.50.13   -j In_RULE_36
    $IPTABLES -A Cid9698X2034.3  -d 192.168.50.14   -j In_RULE_36
    $IPTABLES -A Cid9698X2034.3  -d 192.168.50.15   -j In_RULE_36
    $IPTABLES -A In_RULE_36  -j LOG  --log-level info --log-prefix "RULE 36 -- ACCEPT "
    $IPTABLES -A In_RULE_36  -j ACCEPT
    # 
    # Rule 38 (vk42)
    # 
    echo "Rule 38 (vk42)"
    # 
    # br4 IN
    $IPTABLES -N In_RULE_38
    $IPTABLES -A INPUT -m physdev --physdev-in vk42 -p icmp  -m icmp  -s 192.168.50.12   --icmp-type any  -m state --state NEW  -j In_RULE_38
    $IPTABLES -A FORWARD -m physdev --physdev-in vk42 -p icmp  -m icmp  -s 192.168.50.12   --icmp-type any  -m state --state NEW  -j In_RULE_38
    $IPTABLES -A In_RULE_38  -j LOG  --log-level info --log-prefix "RULE 38 -- ACCEPT "
    $IPTABLES -A In_RULE_38  -j ACCEPT
    # 
    # Rule 39 (vethb1)
    # 
    echo "Rule 39 (vethb1)"
    # 
    # br4 border IN
    $IPTABLES -N Cid15566X9203.0
    $IPTABLES -A FORWARD -m physdev --physdev-in vethb1 -p icmp  -m icmp  -d 192.168.50.1   --icmp-type any  -m state --state NEW  -j Cid15566X9203.0
    $IPTABLES -N In_RULE_39
    $IPTABLES -A Cid15566X9203.0  -s 192.168.50.13   -j In_RULE_39
    $IPTABLES -A Cid15566X9203.0  -s 192.168.50.14   -j In_RULE_39
    $IPTABLES -A Cid15566X9203.0  -s 192.168.50.15   -j In_RULE_39
    $IPTABLES -N Cid15566X9203.1
    $IPTABLES -A INPUT -m physdev --physdev-in vethb1 -p icmp  -m icmp  -d 192.168.50.1   --icmp-type any  -m state --state NEW  -j Cid15566X9203.1
    $IPTABLES -A Cid15566X9203.1  -s 192.168.50.13   -j In_RULE_39
    $IPTABLES -A Cid15566X9203.1  -s 192.168.50.14   -j In_RULE_39
    $IPTABLES -A Cid15566X9203.1  -s 192.168.50.15   -j In_RULE_39
    $IPTABLES -N Cid15566X9203.2
    $IPTABLES -A FORWARD -m physdev --physdev-in vethb1 -p icmp  -m icmp  --icmp-type any  -m state --state NEW  -j Cid15566X9203.2
    $IPTABLES -N Cid15566X9203.3
    $IPTABLES -A Cid15566X9203.2  -d 192.168.0.37   -j Cid15566X9203.3
    $IPTABLES -A Cid15566X9203.2  -d 192.168.50.12   -j Cid15566X9203.3
    $IPTABLES -A Cid15566X9203.3  -s 192.168.50.13   -j In_RULE_39
    $IPTABLES -A Cid15566X9203.3  -s 192.168.50.14   -j In_RULE_39
    $IPTABLES -A Cid15566X9203.3  -s 192.168.50.15   -j In_RULE_39
    $IPTABLES -A In_RULE_39  -j LOG  --log-level info --log-prefix "RULE 39 -- ACCEPT "
    $IPTABLES -A In_RULE_39  -j ACCEPT
    # 
    # Rule 40 (vmh1)
    # 
    echo "Rule 40 (vmh1)"
    # 
    # br4 border IN
    $IPTABLES -N Cid16232X9203.0
    $IPTABLES -A FORWARD -m physdev --physdev-in vmh1 -p icmp  -m icmp  -s 192.168.50.1   --icmp-type any  -m state --state NEW  -j Cid16232X9203.0
    $IPTABLES -N In_RULE_40
    $IPTABLES -A Cid16232X9203.0  -d 192.168.50.12   -j In_RULE_40
    $IPTABLES -A Cid16232X9203.0  -d 192.168.50.13   -j In_RULE_40
    $IPTABLES -A Cid16232X9203.0  -d 192.168.50.14   -j In_RULE_40
    $IPTABLES -A Cid16232X9203.0  -d 192.168.50.15   -j In_RULE_40
    $IPTABLES -N Cid16232X9203.1
    $IPTABLES -A FORWARD -m physdev --physdev-in vmh1 -p icmp  -m icmp  -s 192.168.50.1   --icmp-type any  -m state --state NEW  -j Cid16232X9203.1
    $IPTABLES -A Cid16232X9203.1  -d 192.168.50.12   -j In_RULE_40
    $IPTABLES -A Cid16232X9203.1  -d 192.168.50.13   -j In_RULE_40
    $IPTABLES -A Cid16232X9203.1  -d 192.168.50.14   -j In_RULE_40
    $IPTABLES -A Cid16232X9203.1  -d 192.168.50.15   -j In_RULE_40
    $IPTABLES -N Cid16232X9203.2
    $IPTABLES -A FORWARD -m physdev --physdev-in vmh1 -p icmp  -m icmp  -s 192.168.0.37   --icmp-type any  -m state --state NEW  -j Cid16232X9203.2
    $IPTABLES -A Cid16232X9203.2  -d 192.168.50.12   -j In_RULE_40
    $IPTABLES -A Cid16232X9203.2  -d 192.168.50.13   -j In_RULE_40
    $IPTABLES -A Cid16232X9203.2  -d 192.168.50.14   -j In_RULE_40
    $IPTABLES -A Cid16232X9203.2  -d 192.168.50.15   -j In_RULE_40
    $IPTABLES -A In_RULE_40  -j LOG  --log-level info --log-prefix "RULE 40 -- ACCEPT "
    $IPTABLES -A In_RULE_40  -j ACCEPT
    # 
    # Rule 42 (vmh2)
    # 
    echo "Rule 42 (vmh2)"
    # 
    # external are IN
    $IPTABLES -N Cid16691X6788.0
    $IPTABLES -A INPUT -i vmh2  -p icmp  -m icmp  -d 192.168.50.1   --icmp-type any  -m state --state NEW  -j Cid16691X6788.0
    $IPTABLES -N In_RULE_42
    $IPTABLES -A Cid16691X6788.0  -s 192.168.50.12   -j In_RULE_42
    $IPTABLES -A Cid16691X6788.0  -s 192.168.50.13   -j In_RULE_42
    $IPTABLES -A Cid16691X6788.0  -s 192.168.50.14   -j In_RULE_42
    $IPTABLES -A Cid16691X6788.0  -s 192.168.50.15   -j In_RULE_42
    $IPTABLES -N Cid16691X6788.1
    $IPTABLES -A FORWARD -i vmh2  -p icmp  -m icmp  -d 192.168.0.37   --icmp-type any  -m state --state NEW  -j Cid16691X6788.1
    $IPTABLES -A Cid16691X6788.1  -s 192.168.50.12   -j In_RULE_42
    $IPTABLES -A Cid16691X6788.1  -s 192.168.50.13   -j In_RULE_42
    $IPTABLES -A Cid16691X6788.1  -s 192.168.50.14   -j In_RULE_42
    $IPTABLES -A Cid16691X6788.1  -s 192.168.50.15   -j In_RULE_42
    $IPTABLES -A In_RULE_42  -j LOG  --log-level info --log-prefix "RULE 42 -- ACCEPT "
    $IPTABLES -A In_RULE_42  -j ACCEPT
    # 
    # Rule 43 (vmh2)
    # 
    echo "Rule 43 (vmh2)"
    # 
    # host border OUT
    $IPTABLES -N Cid16236X6788.0
    $IPTABLES -A OUTPUT -o vmh2  -p icmp  -m icmp  -s 192.168.50.1   --icmp-type any  -m state --state NEW  -j Cid16236X6788.0
    $IPTABLES -N Out_RULE_43
    $IPTABLES -A Cid16236X6788.0  -d 192.168.50.12   -j Out_RULE_43
    $IPTABLES -A Cid16236X6788.0  -d 192.168.50.13   -j Out_RULE_43
    $IPTABLES -A Cid16236X6788.0  -d 192.168.50.14   -j Out_RULE_43
    $IPTABLES -A Cid16236X6788.0  -d 192.168.50.15   -j Out_RULE_43
    $IPTABLES -N Cid16236X6788.1
    $IPTABLES -A FORWARD -o vmh2  -p icmp  -m icmp  -s 192.168.0.37   --icmp-type any  -m state --state NEW  -j Cid16236X6788.1
    $IPTABLES -A Cid16236X6788.1  -d 192.168.50.12   -j Out_RULE_43
    $IPTABLES -A Cid16236X6788.1  -d 192.168.50.13   -j Out_RULE_43
    $IPTABLES -A Cid16236X6788.1  -d 192.168.50.14   -j Out_RULE_43
    $IPTABLES -A Cid16236X6788.1  -d 192.168.50.15   -j Out_RULE_43
    $IPTABLES -A Out_RULE_43  -j LOG  --log-level info --log-prefix "RULE 43 -- ACCEPT "
    $IPTABLES -A Out_RULE_43  -j ACCEPT
    # 
    # Rule 45 (br0)
    # 
    echo "Rule 45 (br0)"
    # 
    # external
    $IPTABLES -A OUTPUT -o br0   -m state --state NEW  -j ACCEPT
    # 
    # Rule 46 (br0)
    # 
    echo "Rule 46 (br0)"
    # 
    # external
    $IPTABLES -A FORWARD -i br0   -s 192.168.0.10   -d 192.168.0.255   -m state --state NEW  -j ACCEPT
    $IPTABLES -A INPUT -i br0   -s 192.168.0.10   -d 192.168.0.255   -m state --state NEW  -j ACCEPT
    $IPTABLES -A INPUT -i br0   -s 192.168.0.10   -m state --state NEW  -j ACCEPT
    # 
    # Rule 47 (global)
    # 
    echo "Rule 47 (global)"
    # 
    $IPTABLES -N RULE_47
    $IPTABLES -A OUTPUT  -j RULE_47
    $IPTABLES -A INPUT  -j RULE_47
    $IPTABLES -A FORWARD  -j RULE_47
    $IPTABLES -A RULE_47  -j LOG  --log-level info --log-prefix "RULE 47 -- DENY "
    $IPTABLES -A RULE_47  -j DROP
}

 
The variable "$IPTABLES" identifies the local iptables command. As already discussed in the last articles we arranged our (virtual) guest systems, the virtualization host and external systems in 3 defined host groups in FWbuilder (see the last article):

  • br6_grp: kali3, kali4, kali5,
  • br4_grp: kali2,
  • ext_grp: the host and some external web server "lamp".

Remember that rules for bridge-ports are investigated separately and independently as a packet moves from one bridge to another. Note that the host and further systems attached to "virbr4" via a veth device "vmh2" are recognized as members of a distinct logical host area for which iptables rules again are reinvestigated separatly by the kernel during packet transport. Therefore we need ACCEPT rules to allow for incoming and outgoing packets at the host's interface "vmh2".

Examples of spoofing scenarios

With 2 bridges in place we can define already a variety of ARP spoofing scenarios with a subsequent MiM-attack. We only test some selected, but typical scenarios. Note again that we cannot prevent the act of spoofing itself with iptables - however, we can prevent that redirected packets arrive at the MiM system.

Example 1: kali2 of virbr4 attacks the communication between kali3 and kali5 within virbr6

Which rule do we expect to prevent this? Actually as kali2 tries to redirect the intended communication from bridge virbr6 into bridge virbr4 we would already expect a DENY rule at the border port "vethb2" to stop redirected packets. In our rules list this would be rule 16.

So let us see. We start ARP spoofing on kali2:

root@kali2: ~# echo 1 > /proc/sys/net/ipv4/ip_forward
root@kali2: ~# iptables -A OUTPUT -p icmp --icmp-type redirect -j REJECT
root@kali2: ~# arpspoof -i eth3 -t 192.168.50.13 192.168.50.14 & 2> /dev/null
root@kali2: ~# arpspoof -i eth3 -t 192.168.50.14 192.168.50.13 & 2> /dev/null

 
eth3 is the relevant Ethernet interface to net 192.168.50.0/24 on guest kali2.
After some time we get the following ARP information on e.g. kali3:

bridges_1

Consequently, after a "journalctl -f" on the virtualization host we find: :

Mar 17 13:21:53 mytux kernel: RULE 16 -- DENY IN=virbr6 OUT=virbr6 PHYSIN=vk63 PHYSOUT=vethb2 MAC=52:54:00:f2:a4:8d:52:54:00:b1:5d:1f:08:00 SRC=192.168.50.13 DST=192.168.50.14 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=16140 DF PROTO=ICMP TYPE=8 CODE=0 ID=1756 SEQ=1 
Mar 17 13:21:54 mytux kernel: RULE 16 -- DENY IN=virbr6 OUT=virbr6 PHYSIN=vk63 PHYSOUT=vethb2 MAC=52:54:00:f2:a4:8d:52:54:00:b1:5d:1f:08:00 SRC=192.168.50.13 DST=192.168.50.14 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=16252 DF PROTO=ICMP TYPE=8 CODE=0 ID=1756 SEQ=2

 
Our test example shows that rules for border ports help to isolate bridges against misguided packets.

Rule 16 deserves a closer look as it contains a logical negation of 2 separately defined groups of hosts. We see that FWbuilder compiles the negation internally correctly: The related subchain definition contains all required hosts.

As described in the previous articles we stop the attack by the command "killall arpspoof" on kali2. Remember that due to time limits for ARP and port caching information on the guests and the bridge, respectively, it may take some time until normal operation is possible again. See the first article of this series for more information on this topic.

Example 2: kali2 of virbr4 attacks the communication between kali3 and the virtualization host

In this scenario a regular (!) packet would propagate from virbr6 through virbr4 and then to the host. Therefore, neither border port rules for virbr6 nor for virbr4 can block the traffic. We must, instead, rely on the analysis of redirected packets following an OUT direction to port vk42 - this is rule 5.

Therefore, this example is just a repetition of what we learned in the first article of this series
Linux bridges – can iptables be used against MiM attacks based on ARP spoofing ? – I

Actually, after another spoofing attack by kali2

root@kali2: ~# arpspoof -i eth3 -t 192.168.50.1 192.168.50.13 & 2> /dev/null
root@kali2: ~# arpspoof -i eth3 -t 192.168.50.13 192.168.50.1 & 2> /dev/null

 
and sending pings from kali3 to the host we get:

Mar 17 18:44:51 mytux kernel: RULE 32 -- ACCEPT IN=virbr6 OUT=virbr6 PHYSIN=vk63 PHYSOUT=vethb2 MAC=54:00:f2:a4:8d:52:54:00:b1:5d:1f:08:00 SRC=192.168.50.13 DST=192.168.50.1 LEN=84 TOS=0x00 PREC=0x00 =64 ID=48428 DF PROTO=ICMP TYPE=8 CODE=0 ID=2872 SEQ=2 
Mar 17 18:44:51 mytux kernel: RULE 5 -- DENY IN=virbr4 OUT=virbr4 PHYSIN=vethb1 PHYSOUT=vk42 MAC=52:50:f2:a4:8d:52:54:00:b1:5d:1f:08:00 SRC=192.168.50.13 DST=192.168.50.1 LEN=84 TOS=0x00 PREC=0x00 TTL ID=48428 DF PROTO=ICMP TYPE=8 CODE=0 ID=2872 SEQ=2 

 
We see that the transition from bridge virbr6 to virbr4 works as planned - however the packets redirected to the MiM kali2 are stopped at vk42. Good!

Example 3: kali3 of virbr6 attacks the communication between kali4 of virbr4 and the virtualization host

We look at pings issued from the host to kali4 after an attack of kali3. In this case the border port rules again must not block. Instead, we rely on local port rules at port vk63, .i.e. rule 2. Indeed:

Mar 17 19:00:39 mytux kernel: RULE 43 -- ACCEPT IN= OUT=vmh2 SRC=192.168.50.1 DST=192.168.50.14 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=53576 DF PROTO=ICMP TYPE=8 CODE=0 ID=2981 SEQ=1 
Mar 17 19:00:39 mytux kernel: RULE 40 -- ACCEPT IN=virbr4 OUT=virbr4 PHYSIN=vmh1 PHYSOUT=vethb1 MAC=52:54:00:b1:5d:1f:7a:ff:fc:bd:68:b6:08:00 SRC=192.168.50.1 DST=192.168.50.14 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=53576 DF PROTO=ICMP TYPE=8 CODE=0 ID=2981 SEQ=1 
Mar 17 19:00:39 mytux kernel: RULE 2 -- DENY IN=virbr6 OUT=virbr6 PHYSIN=vethb2 PHYSOUT=vk63 MAC=52:54:00:b1:5d:1f:7a:ff:fc:bd:68:b6:08:00 SRC=192.168.50.1 DST=192.168.50.14 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=53576 DF PROTO=ICMP TYPE=8 CODE=0 ID=2981 SEQ=1 

 

Example 4: kali3 of virbr6 attacks the communication between kali2 and the virtualization host

In this case border rules should stop redirected packets. For our test case this would in particular be rule 18.

And - after the initialization of the attack by kali3 and the trial to send pings from kali2 to the host, we get:

Mar 18 16:47:30 mytux kernel: RULE 18 -- DENY IN=virbr4 OUT=virbr4 PHYSIN=vk42 PHYSOUT=vethb1 MAC=52:54:00:b1:5d:1f:52:54:00:f2:a4:8d:08:00 SRC=192.168.50.12 DST=192.168.50.1 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=4405 DF PROTO=ICMP TYPE=8 CODE=0 ID=2420 SEQ=1 

 
And vice versa :

Mar 18 16:48:42 mytux kernel: RULE 43 -- ACCEPT IN= OUT=vmh2 SRC=192.168.50.1 DST=192.168.50.12 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=63251 DF PROTO=ICMP TYPE=8 CODE=0 ID=21778 SEQ=1 
Mar 18 16:48:42 mytux kernel: RULE 18 -- DENY IN=virbr4 OUT=virbr4 PHYSIN=vmh1 PHYSOUT=vethb1 MAC=52:54:00:b1:5d:1f:f2:be:a1:5a:cd:6e:08:00 SRC=192.168.50.1 DST=192.168.50.12 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=63251 DF PROTO=ICMP TYPE=8 CODE=0 ID=21778 SEQ=1 

 
As expected!

Example 5: The host attacks communication between guests attached to an inner bridge

One may think such an example is just academic. Actually, in my opinion it is not. Although the administrator of a virtualization host has in principle a variety of means available to follow any communication across a bridge, ARP spoofing should NOT be such a measure under normal operation conditions. In addition, there may be legal aspects in a professional hosting situation.

But more important: From the perspective of the involved bridges, in our setup the host is attached to bridge virbr4 as an external guest over a border port. Rules for the virtualization host are, therefore, only an example for similar rules applied to other external hosts which may have the allowance to communicate with bridge guests - via forwarding and a respective route defined on the virtualization host.

We expect rule 20 to stop packages redirected by the MiM:

         
Mar 18 17:38:38 rux kernel: RULE 32 -- ACCEPT IN=virbr6 OUT=virbr6 PHYSIN=vk63 PHYSOUT=vethb2 MAC=f2:be:a1:5a:cd:6e:52:54:00:b1:5d:1f:08:00 SRC=192.168.50.13 DST=192.168.50.12 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=36173 DF PROTO=ICMP TYPE=8 CODE=0 ID=2218 SEQ=1 
Mar 18 17:38:38 rux kernel: RULE 20 -- DENY IN=virbr4 OUT=virbr4 PHYSIN=vethb1 PHYSOUT=vmh1 MAC=f2:be:a1:5a:cd:6e:52:54:00:b1:5d:1f:08:00 SRC=192.168.50.13 DST=192.168.50.12 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=36173 DF PROTO=ICMP TYPE=8 CODE=0 ID=2218 SEQ=1 

 
And vice versa

       
Mar 18 17:39:39 rux kernel: RULE 20 -- DENY IN=virbr4 OUT=virbr4 PHYSIN=vk42 PHYSOUT=vmh1 MAC=f2:be:a1:5a:cd:6e:52:54:00:f2:a4:8d:08:00 SRC=192.168.50.12 DST=192.168.50.13 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=10910 DF PROTO=ICMP TYPE=8 CODE=0 ID=2730 SEQ=1 
Mar 18 17:39:40 rux kernel: RULE 20 -- DENY IN=virbr4 OUT=virbr4 PHYSIN=vk42 PHYSOUT=vmh1 MAC=f2:be:a1:5a:cd:6e:52:54:00:f2:a4:8d:08:00 SRC=192.168.50.12 DST=192.168.50.13 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=11113 DF PROTO=ICMP TYPE=8 CODE=0 ID=2730 SEQ=2 

 

Summary

So, all in all, for our few examples we could verify that our recipe for setting up iptables rules in case of several linked Linux bridges with guests on one [KVM] virtualization host guided us correctly. After associating unique IP addresses with bridge ports we can define rules that block the transport of packets redirected to a MiM system - even when multiple bridges are present on the virtualization host. Additional and special rules for the bridges' border ports help to prevent irregular traffic between defined groups of guests and/or external hosts.

Note that we only demonstrated this for specific allowance rules for the ICMP protocol. Yet, it is easy to understand that the very same principles should work for any protocol on level 4.

In the next article of this series we will look at an example with an external host and eventually discuss what our test results mean for administrators of virtualization hosts.

Linux bridges – can iptables be used against MiM attacks based on ARP spoofing ? – II

In the last article
Linux bridges – can iptables be used against MiM attacks based on ARP spoofing ? – I
we saw that iptables rules with options like

-m physdev --physdev-in/out device

may help in addition to other netfilter tools, which work on network level 2, to block redirected traffic to a "man in the middle system" on a bridge.

Tools like FWbuilder support the creation of such "physdev"-related rules as soon as bridge devices are marked as bridged in the interface definition process for the firewall host. However, we have also seen that we need to bind IP addresses to certain bridge ports. This in turn requires knowledge about a predictable IP-to-port-configuration. Such a requirement may be an obstacle for using iptables in scenarios with many virtual guests on one or several Linux bridges of a virtualization host as it reduces flexibility for automated IP address assignment.

Before we discuss administrative aspects in a further article, let us expand our iptables rules to a more complex situation:
In this article we discuss a scenario with 2 linked Linux bridges "virbr4" and "virbr6" plus the host attached to "virbr4". This provides us with a virtual infrastructure for which we need to construct a more complex, but more general set of rules in comparison to what we discussed in the last article. We will look at the required rules and their order. Testing of the rules will be done in a forthcoming article.

Two coupled bridges and the host attached via veth devices

You see my virtual bridge setup in the following drawing.

(Note for those who read the article before: I have exchanged the picture to make it consistent with a forthcoming article. The port for kali2 has been renamed to "vk42").

bridge3

The small blue rectangles inside the bridges symbolize standard Linux tap devices - whereas the RJ45 like rectangles symbolize veth devices. veth pairs deliver a convenient way on a Linux system to link bridges and to attach the host to them in a controllable way. As a side effect one can avoid to assign the bridge itself an IP address. See:
Fun with veth devices, Linux virtual bridges, KVM, VMware – attach the host and connect bridges via veth

In the drawing you recognize our bridge "virbr6" and its guests from the last article. The new bridge "virbr4" is only equipped with one guest (kali2); this is sufficient for our test case purposes. Of course, you could have many more guests there in realistic scenarios. Note that attaching certain groups of guests to distinct bridges also occurs in physical reality for a variety of reasons.

Two types of ports

For the rest of this article we call ports as vethb2 on virbr6, vethb1 and vmh1 on virbr4 "border ports" of their respective bridges. Such border ports

  • connect a bridge to another bridges,
  • connect a bridge to the virtualization host
  • or connect the bridge to hosts on external real Ethernet segments.

We remind the reader that it always is the perspective of the bridge that decides about the INcoming or OUTgoing direction of an Ethernet packet via a specific port when we define IN/OUT iptables rules.

Therefore, packets crossing a border port in the IN direction always come from outside the bridge. Packets leaving the port OUTwards may however come from guests of the bridge itself AND from guests outside other border ports of the very same bridge.

In contrast to border ports we shall call a port of a bridge with just one defined guest behind it a "guest port". [In our test case the bridge connection of guests is realized with tap devices because this is required by KVM. In the case of LXC and docker containers we would rather see veth-pairs.]

Multiple bridges on one host - how are the iptables rules probed?

Just from looking at the sketch we see a logical conundrum, which has a significant impact on the setup of iptables rules on a host with multiple bridges in place:

A packet created at one of the ports may leave the bridge where it has been created and travel in and through a neighboring bridge via border ports. But when and how are port related rules tested as the packet travels - lets e.g. say from kali5 to the guest at "vnet0" or to the host at "vmh2"?

  • Bridge for bridge - IN-Port-rules, then OUT-port-rules on the same first bridge => afterwards IN-port-rules/OUT-port-rules again - but this time for the ports of the next entered bridge?
  • Or: iptables rules are checked only once, but globally and for all bridges - with some knowledge of port-MAC-relations of the different bridges included?

If the latter were true just one passed ACCEPT rule on one single bridge port would lead to an overall acceptance of a packet despite the fact that the packet possibly will cross further bridges afterward. Such a behavior would seem unreasonable - but who knows ...

So the basic question is:

After having been checked on a first bridge, having been accepted for leaving one border port of this first bridge and then having entered a second linked bridge via a corresponding border port - will the packet be checked again against all denial and acceptance rules of the second bridge? Will the packet with its transportation attributes be injected again into the whole set of iptables rules?

It is obvious that the answer would have an impact of how we need to define our rules. Especially during port flooding, which we already observed in the tests described in our first article.

Tests of the order of iptables rules probing for ports of multiple bridges on a packet's path

As a first test we do something very simple: we define some iptables rules for ICMP pings formally in the following logical order: We first deny a passage through vethb1 on virbr4 before we allow the packet to pass vethb2 on virbr6:

bridge vibr4 rule 15:  src 192.168.50.14, dest 192.168.50.1 - ICMP IN vethb1 => DENY
bridge vibr6 rule 16:  src 192.168.50.14, dest 192.168.50.1 - ICMP OUT vethb2 => ALLOW

 
and then we test the order of how these rules are passed by logging them.

To avoid any wrong or missing ARP information on the involved guest/host systems and missing MAC-port-relations in the "forward databases" [FWB] of the bridges we first clear any iptables rules and try some pings before sending ping packets. Then we activate the rules and get for ping packets sent from kali4 to the host:

2016-02-27T12:09:33.295145+01:00 mytux kernel: [ 5127.067043] RULE 16 -- ACCEPT IN=virbr6 OUT=virbr6 PHYSIN=vk64 PHYSOUT=vethb2 MAC=96:b0:a9:7c:73:7d:52:54:00:74:60:4a:08:00 SRC=192.168.50.14 DST=192.168.50.1 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=22031 DF PROTO=ICMP TYPE=8 CODE=0 ID=1711 SEQ=1 
2016-02-27T12:09:33.295158+01:00 mytux kernel: [ 5127.067062] RULE 15 -- DENY IN=virbr4 OUT=virbr4 PHYSIN=vethb1 PHYSOUT=vmh1 MAC=96:b0:a9:7c:73:7d:52:54:00:74:60:4a:08:00 SRC=192.168.50.14 DST=192.168.50.1 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=22031 DF PROTO=ICMP TYPE=8 CODE=0 ID=1711 SEQ=1 
2016-02-27T12:09:34.302140+01:00 mytux kernel: [ 5128.075040] RULE 16 -- ACCEPT IN=virbr6 OUT=virbr6 PHYSIN=vk64 PHYSOUT=vethb2 MAC=96:b0:a9:7c:73:7d:52:54:00:74:60:4a:08:00 SRC=192.168.50.14 DST=192.168.50.1 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=22131 DF PROTO=ICMP TYPE=8 CODE=0 ID=1711 SEQ=2 
2016-02-27T12:09:34.302153+01:00 mytux kernel: [ 5128.075056] RULE 15 -- DENY IN=virbr4 OUT=virbr4 PHYSIN=vethb1 PHYSOUT=vmh1 MAC=96:b0:a9:7c:73:7d:52:54:00:74:60:4a:08:00 SRC=192.168.50.14 DST=192.168.50.1 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=22131 DF PROTO=ICMP TYPE=8 CODE=0 ID=1711 SEQ=2

 
Now we do a reverse test: We allow the incoming direction over port vk64 of virbr6 before we deny the incoming package over vethb1 on virbr4:

bridge vibr6 rule :  src 192.168.50.14, dest 192.168.50.1 - IN vk64 => ALLOW
bridge vibr4 rule :  src 192.168.50.14, dest 192.168.50.1 - IN vethb1 => DENY

 
We get

2016-02-27T14:02:32.821286+01:00 mytux kernel: [11913.962828] RULE 15 -- ACCEPT IN=virbr6 OUT=virbr6 PHYSIN=vk64 PHYSOUT=vethb2 MAC=96:b0:a9:7c:73:7d:52:54:00:74:60:4a:08:00 SRC=192.168.50.14 DST=192.168.50.1 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=21400 DF PROTO=ICMP TYPE=8 CODE=0 ID=2104 SEQ=1 
2016-02-27T14:02:32.821307+01:00 mytux kernel: [11913.962869] RULE 16 -- DENY IN=virbr4 OUT=virbr4 PHYSIN=vethb1 PHYSOUT=vmh1 MAC=96:b0:a9:7c:73:7d:52:54:00:74:60:4a:08:00 SRC=192.168.50.14 DST=192.168.50.1 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=21400 DF PROTO=ICMP TYPE=8 CODE=0 ID=2104 SEQ=1 
2016-02-27T14:02:33.820257+01:00 mytux kernel: [11914.962965] RULE 15 -- ACCEPT IN=virbr6 OUT=virbr6 PHYSIN=vk64 PHYSOUT=vethb2 MAC=96:b0:a9:7c:73:7d:52:54:00:74:60:4a:08:00 SRC=192.168.50.14 DST=192.168.50.1 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=21494 DF PROTO=ICMP TYPE=8 CODE=0 ID=2104 SEQ=2 
2016-02-27T14:02:33.820275+01:00 mytux kernel: [11914.962987] RULE 16 -- DENY IN=virbr4 OUT=virbr4 PHYSIN=vethb1 PHYSOUT=vmh1 MAC=96:b0:a9:7c:73:7d:52:54:00:74:60:4a:08:00 SRC=192.168.50.14 DST=192.168.50.1 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=21494 DF PROTO=ICMP TYPE=8 CODE=0 ID=2104 SEQ=2 

 
So to our last test:

bridge vibr6 rule :  src 192.168.50.14, dest 192.168.50.1 - IN vk64 => ALLOW
bridge vibr6 rule :  src 192.168.50.14, dest 192.168.50.1 - IN vethb2 => DENY
bridge vibr4 rule :  src 192.168.50.14, dest 192.168.50.1 - IN vethb1 => DENY

 
We get:

2016-02-27T14:26:08.964616+01:00 mytux kernel: [13331.634200] RULE 15 -- ACCEPT IN=virbr6 OUT=virbr6 PHYSIN=vk64 PHYSOUT=vethb2 MAC=96:b0:a9:7c:73:7d:52:54:00:74:60:4a:08:00 SRC=192.168.50.14 DST=192.168.50.1 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=27122 DF PROTO=ICMP TYPE=8 CODE=0 ID=2218 SEQ=1 
2016-02-27T14:26:08.964633+01:00 mytux kernel: [13331.634232] RULE 17 -- DENY IN=virbr4 OUT=virbr4 PHYSIN=vethb1 PHYSOUT=vmh1 MAC=96:b0:a9:7c:73:7d:52:54:00:74:60:4a:08:00 SRC=192.168.50.14 DST=192.168.50.1 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=27122 DF PROTO=ICMP TYPE=8 CODE=0 ID=2218 SEQ=1 
2016-02-27T14:26:09.972621+01:00 mytux kernel: [13332.643587] RULE 15 -- ACCEPT IN=virbr6 OUT=virbr6 PHYSIN=vk64 PHYSOUT=vethb2 MAC=96:b0:a9:7c:73:7d:52:54:00:74:60:4a:08:00 SRC=192.168.50.14 DST=192.168.50.1 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=27347 DF PROTO=ICMP TYPE=8 CODE=0 ID=2218 SEQ=2 
2016-02-27T14:26:09.972637+01:00 mytux kernel: [13332.643605] RULE 17 -- DENY IN=virbr4 OUT=virbr4 PHYSIN=vethb1 PHYSOUT=vmh1 MAC=96:b0:a9:7c:73:7d:52:54:00:74:60:4a:08:00 SRC=192.168.50.14 DST=192.168.50.1 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=27347 DF PROTO=ICMP TYPE=8 CODE=0 ID=2218 SEQ=2 

 

Intermediate conclusions

We can conclude the following points :

  • A packet is probed per bridge - in the order of how multiple bridges of the host are passed by the packet.
  • An ALLOW rule for a port on one bridge does not overrule a DENY rule for a port on a second bridge which the package may pass on its way.
  • A packet is tested both for IN/OUT conditions of a FORWARD rule for each bridge it passes.
  • If we split IN and OUT rules on a bridge (as we need to do within some tools as FWbuilder) than we must probe the OUT rules first to guarantee the prevention of illegal packet transport.

For the rest of the article we shall follow the same rule we already used as a guide line in the previous article: Our general iptables policy is that a packet will be denied if it is not explicitly accepted by one of the tested rule.

Blocking of border ports in port flooding situations

During our tests in the last article we have seen that port flooding situations may occur - depending among other things on the "setaging" parameter of the bridge and the resulting deletion of stale entries in the "Forward Database" [FWD] of a bridge. Flooding of veth based border ports may be critical for packet transmission and may have to be blocked in some cases:

E.g. it would be unreasonable to transfer packets logically meant for hosts beyond port vmh1 of virbr4 over vethb1/2 to virbr6. We would stop such packets already via OUT DENY rules for vethb1:

bridge vibr4 rule :  src "guest of virbr4", dest "no guest of virbr6" - OUT vethb1 => DENY

 

Rules regarding packets just crossing and passing a bridge

Think about a bridge "virbrx" linked on its both sides to two other bridges "virbr_left" and "virbr_right". In such a scenario packets could arrive at virbrx from bridge virbr_right, enter the intermediate bridge virbrx and leave it at once again for the third bridge virbr_left - because it never was destined to any guest of bridge virbrx.

For such packets we need at least one ACCEPT rule om virbrx - either on the IN direction of the border port of virbrx against virbr_right or on the OUT direction at the border port to virbr_left.

Again, we cling to our policy of the last article:
We define DENY rules for outgoing packets at all ports - also for border ports - and put these DENY rules to the top of the iptables list; then we define DENY rules for ports which are passed in IN direction; only after that we define ACCEPT rules for incoming packets for all ports of a bridge - including border ports - and set these rules below/after the DENIAL rules. This should provide us with a consistent handling also of packets crossing and passing bridges.

Grouping of guests/hosts

From looking at the drawing above we also understand the following point: In order to handle packets at border ports connecting two bridges we have the choice to block packets at either border port - i.e. before the OUTgoing port passage on the first bridge OR before the INcoming port passage on the second. We shall do the blocking at the port in the packets OUTgoing direction. Actually, there would be no harm in setting up reasonable DENY rules for both ports. Then we would safely cover all types of situations.

Anyway - we also find that the rules for border ports require a certain grouping of the guests and hosts:

  • Group 1: Guests attached to the bridge of the border port.
  • Group 2: Guests on the IN side of the border port of a bridge - i.e. the internal side of the bridge. This group includes Group 1 plus external guests of further bridges beyond other border ports of the very same bridge.
  • Group 3:Guests on the outgoing side of a border port - i.e. the side to the next connected bridge. This group contains hosts of Group 1 for the next connected bridge and/or groups of external hosts on the OUT side of all other border ports of the connected bridge.

These groups can easily be formed per bridge by tools like FWbuilder. Without going into details: Note that FWbuilder handles the overall logical OR/AND switching during a negation of multiple groups of hosts correctly when compiling iptables rules.

Overall rules order in case of multiple and connected bridges

Taking into account the results of the first article in this series I suggest the following order of iptables rules:

  • We first define OUT DENY rules for all guest ports of all bridges - with ports grouped by bridges just to keep the overview. These rules are the most important ones to prevent ARP spoofing and a resulting packet redirection.
  • We then define all OUT DENY rules for border ports of all bridges - first grouped by bridges and then per bridge and ports grouped by hosts for the OUTgoing direction. These rules cover also port flooding situations with respect to neighboring linked bridges.
  • We then define IN DENY rules for incoming packets over border ports. These rules may in addition to the previous rules prevent implausible packet transport.
  • Now we apply OUT DENY and IN DENY rules for Ethernet devices on the virtualization host. Such rules must must not be forgotten and can be placed herein the rules' sequence.
  • We then define IN ACCEPT rules on individual guest ports - ports again grouped by bridges.
  • We eventually define IN ACCEPT rules on bridge border ports - note that such rules are required for packets just passing an intermediate bridge without being destined to a guest of the bridge.
  • IN ACCEPT rules for the virtualization hosts's Ethernet interfaces must not be forgotten and can be placed at the end.

How does that look like in FWbuilder?

Before looking at the pics note that we have defined the host groups

  • br6_grp to contain kali3, kali4, kali5,
  • br4_grp to contain only kali2,
  • ext_grp to contain the host and some external web server "lamp".

With this we get the following 7 groups of rules:

full_1

full_2

full_3

full_4

full_5

full_6

full_7

Despite the host grouping : this makes quite a bunch of rules! But yet not uncontrollable ...

Enough for today. I hope that tests being performed in a third article of this series will not proof me wrong. I am confident .... See
Linux bridges – can iptables be used against MiM attacks based on ARP spoofing ? – III