Samba 4, shares, wsdd and Windows 10 – how to list Linux Samba servers in the Win 10 Explorer

These days I relatively often need to work with Windows 10 at home (home-office, corona virus, …). Normally, I isolate my own Win 10 instance in a VMware virtual machine on my Linux PC – and reduce any network connections of this VM to selected external servers. Under normal conditions all ports on the Linux host are closed for the virtual machine [VM]. But on a few temporary occasions I want to the Win 10 system to access a specific Samba exchange directory on a KVM virtualized Linux instance on the same host.

Off topic: You see that I never present directories of my Linux host directly to a Win 10 guest via Samba. Instead I transfer files via an exchange directory on an intermediate VM whose Samba service is configured to disallow access of the Win system on shares presented to the host. A primitive, but effective form of separation. The only inconvenient consequence is that synchronization becomes a two-fold process on the host and the Linux VM. But we have Linux tools for this, so the effort is limited. )

Of course we want to use the SMB protocol in a modern version, i.e. version 3.x (SMB3), over TCP/IP for this purpose (port 445). In addition we need some mechanism to detect and browse SMB servers on the Windows system. In the old days NetBIOS was used for the latter. On the Linux side we had the nmbd-daemon for it – and we could set up a special Samba server as a WINS server.

During the last year Microsoft has – via updates and new builds of Windows 10 – followed a consistent politics of deactivating the use of SMB V1.0 systematically. This, however, led to problems – not only between Windows PCs, but also between Win 10 instances and Samba 4 servers. This article addresses one of these problems: the missing list of available Samba servers in the Windows Explorer.

There are many contributions on the Internet describing this problem and some even say that you only can solve it by restoring SMB V1 capabilities in Win 10 again. In this article I want to recommend two different solutions:

  • Ignore the problem of Samba server detection and use your Samba shares on Win 10 with the SMB3 protocol as network drives.
  • If you absolutely want to see and list your Samba servers in the Windows Explorer of a Win 10 client, use the “Web-Service-Discovery” service via a WSDD-daemon provided by a Python script of Steffen Christgau.

I myself got on the right track of solving the named problem by an article of a guy called “Stilez”. His article is the first one listed under the section “Links” below. I recommend strongly to read it; it is Stilez who deserves all credit in pointing out both the problem and the solution. I just applied his insight to my own situation with virtualized Samba servers based on Opensuse Leap 15.1.

SMB V1.0 should be avoided – but NetBIOS needs it to exchange information about SMB servers

SMB, especially version SMB V1.0, is well known for security problems. Even MS has understood this – especially after the Wannacry disaster. See e.g. the links in the section “Links” => “Warnings of SMBV1” at the end of this article. MS has deactivated SMB V1 in the background via some updates of Win 8 and Win 10.

One of the resulting problem is that we do not see Samba servers in the Windows Explorer of a Win 10 system any longer. In the section “Network” of the Windows Explorer you normally should see a list of servers which are members of a Workgroup and offer shares.

Two years ago we would use NetBIOS’s discovery protocol and a WINS server to get this information. Unfortunately, the NetBIOS service detection ability depends on SMB1 features. The stupid thing is that we for a long while now had and have a relatively secure SMB2/3, but NetBIOS discovery only worked with SMB V1 enabled on the Windows client. Deactivating SMB V1 means deactivating NetBIOS at the
same time – and if you watch your Firewall logs for incoming packets from the Win 10 clients you will notice that exactly such a thing happened on Win 10 clients.

This actually means that you can have a full featured Samba/NetBIOS setup on the Linux side, that you may have opened the right ports on the firewalls for your Samba/WINS server and client systems, but that you will nevertheless not get any list of available Samba servers in Win 10’s Explorer. 🙁

Having understood this leads to the key question for our problem:

By what did MS replace the detection features of NetBIOS in combination with SMB-services?

Settings on the MS Win side – which alone will not help

When you google a bit you may find many hints regarding settings by which you activate network “discovery” functionalities via two Windows services. See

https://www.wintips.org/fix-windows-10-network-computers-not-showing/
https://winaero.com/blog/network-computers-not-visible-windows-10-version-1803/

You can follow these recommendations. If you want to see your own PC and other Windows systems in the Explorer’s list of network resources you must have activated them (see below). However, in my Win 10 client the recommended settings were already activated – with the exception of SMB V1, which I did and do not wish to reactivate again. The “discovery” settings may help you with other older Windows systems, but they do not enable a listing of Samba 4 servers without additional measures on Win 10.

There is another category of hints which in my opinion are contra-productive regarding security. See https://devanswers.co/network-error-problem-windows-cannot-access-hostname-samba/
Why activate an insecure setting? Especially, as such a setting does not really help us with our special problem? 🙁

A last set of hints concerns the settings on the Samba server, itself. I find it especially nice when such recommendations come from Microsoft :-). See: http://woshub.com/cannot-access-smb-network-shares-windows-10-1709/

[global]
server min protocol = SMB2_10
client max protocol = SMB3
client min protocol = SMB2_10
encrypt passwords = true
restrict anonymous = 2

Thanks to MS we now understand that we should not use SMB V1 …. But, actually, these hints are again insufficient regarding the Explorer problem …

What you could do – but should NOT do

Once you have understood that NetBIOS and SMB V1 still have an intimate relation (at least on a Windows systems) you may get the idea that there might exist some option to reactivate SMBV1 again on the Win 10 system. This is indeed possible. See here:
https://community.nethserver.org/t/windows-10-not-showing-servers-shares-in-network-browser/14263/4
https://www.wintips.org/fix-windows-10-network-computers-not-showing/

If you follow the advice of the authors and in addition re-open the standard ports for NetBIOS (UDP) 137, 138, (TCP) 139 on your firewalls between the Win 10 machine and your Samba servers you will – almost at once – get up the list of your accessible Samba servers in the Network section of the Win 10 Explorer. (Maybe you have to restart the smb and nmb services on your Linux machines).

But: You should not do this! SMB V1 should definitely become history!

Fortunately, a re-activation of SMB V1
on a Win 10 system is NOT required to mount Samba shares and it is neither required to get a list of available Samba servers in the Win 10 Explorer.

What you should do: Win 10 service settings

There are two service settings which are required to see other servers (and your own Win10 PC itself) in the list of network hosts presented by the Windows explorer:
Start services.msc ( press the Windows key + R => Enter “services.msc” in the dialog. Or: start services.msc it via the Control Panel => System and Security => Services)

  • Look for “Function Discovery Provider Host” => Set : Startup Type => Automatic
  • Look for “Function Discovery Resource Publication” => Set : Startup Type => Automatic (Delayed Start) !!

I noticed that on my VMware Win 10 guests the second setting appeared to be crucial to get the Win 10 PC itself listed among the network servers.

What you should do: Use the SMBV3 protocol!

As you as a Linux user meanwhile have probably replaced all your virtualized Win 7 guests, you should use the following settings in the [global] section of the configuration file “/etc/samba/smb.conf” of your Samba servers:

[global]

“protocol = SMB3”.

This is what Win 10 supports; you need SMB2_10 with some builds of Win 8 (???), only. Remember also that port 445 must be open on a firewall between the Win 10 client and your Samba server.

For Linux requirements to use SMB3 see
https://wiki.samba.org: SMB3 kernel status
For “SMB Direct” (RDMA) you normally need a kernel version > 4.16. On Opensuse Leap 15.1 most of the required kernel features have been backported. In Win 10 SMB Direct is normally activated; you find it in the “Window-Features” settings (https://www.windowscentral.com/how-manage-optional-features-windows-10)

Not seeing Samba servers in the Explorer does not mean that mounting a Samba share as a network drive does not work

Not seeing the Samba servers in the Win 10 Explorer – because the NetBIOS detection is defunct – does not mean that you cannot work with a Samba share on a Win 10 system. You can just “mount” it on Windows as a “network drive“:

Open a Windows Explorer, choose “This PC” on the left side, then click “Map network drive” in the upper area of the window and follow the instructions:
You choose a free drive letter and provide the Samba server name and its share in the usual MS form as “\\SERVERNAME\SHARE”.
Afterwards, you must activate the option “Connect using different credentials” in the dialog on the Win 10 side, if your Win 10 user for security reasons has a different UID and Password on the Samba server than on Win 10. Needless to say that this is a setting I strongly recommend – and of course we do not allow any direct anonymous or guest access to our Samba server without credentials delivered from a Windows machine (at least not without any central authentication systems).
So, you eventually must provide a valid Samba user name on your Samba server and the password – and there you happily go and use your resources on the Samba share from your Win 10 client.

I assumed of course that you have allowed access from the Win 10 host and the user by respective settings of “hosts allow” and “valid users” for the share in your Samba configuration.
Note: You need not mark the option for reconnecting the share in the Windows dialog for network drives if you only use the Samba exchange shares temporarily.

On an Opensuse system this works perfectly with the protocol settings for SMB3 on the server. So, you can use your shares even without seeing the samba
server in the Explorer: You just have to know what your shares are named and on which Samba servers they are located. No problem for a Linux admin.

In my opinion this approach is the most secure one among all “peer to peer”-approaches which have to work without a central network wide authentication service. It only requires to open port 445 for the time of a Samba session to a specific Samba server. Otherwise you do not provide any information for free to the Win 10 system and its “users”. (Well, an open question is what MS really does with the provided Samba credentials. But that is another story ….)

What you should do: Use the WSDD service on your Samba server

If you allow for some information sharing between your virtualized Win 10 and other KVM based virtual Samba machines in your LAN – and are not afraid of Microsoft or Antivirus companies on the Windows system to collect respective information – then there is a working option to get a stable list of the available Samba servers in the Windows Explorer – without the use of SMB V1.0.

Windows 10 implements web service detection via multiple mechanisms; among them: Multicast messages over ports 3702 (UDP), TCP 5357 and 1900 (UDP). For a detection of Samba services you “only” need ports 3702 (UDP) and 5357 (TCP). The general service detection port 1900 can remain closed in the firewalls between your Win 10 instances and your Linux world for our specific purpose. See
https://www.speedguide.net/port.php?port=5357
https://www.speedguide.net/port.php?port=3702
https://techcommunity.microsoft.com/t5/ask-the-performance-team/ws2008-the-wsd-port-monitor/ba-p/372760
https://en.wikipedia.org/wiki/Simple Service Discovery Protocol

The mechanism using ports 3702 and 5351 is called “Web Service Discovery” and was introduced by MS to cover the detection of printers and other devices in networks. In combination with SMB2 and SMB3 it is the preferred service to detect Samba services.

OK, do we have something like a counter-part available on a Linux system? Obviously, such a service is not (yet?) included in Samba 4 – at least not in the 4.9 version on my system with Opensuse Leap 15.1. The fact that WSD is not (yet?) a part of Samba may have some good reasons. See link.
One can understand the reservations and hesitation to include it, as WSD also serves other purposes than just the detection of SMB services.

Fortunately, a guy named Steffen Christgau, has written an (interesting) Python 3 script, which offers you the basic WSD functionality. See https://github.com/christgau/wsdd.

You can use the script in form of a daemon process on a Linux system – hence we speak of WSDD.

Using YaST I quickly found out that a WSDD RPM package is actually included in my “Opensuse Leap 15.1 Update” repository. People with other Linux distros may download the present WSDD version from GitHub.

On Opensuse it comes with an associated systemd service-file which you find in the directory “/usr/lib/systemd/system”.

[Unit]
Description=Web Services Dynamic Discovery host daemon
After=network-online.target
Wants=network-online.target

[Service]
Type=simple
AmbientCapabilities=CAP_SYS_CHROOT
PermissionsStartOnly=true
Environment= WSDD_ARGS=-p
ExecStartPre=/usr/lib/wsdd/wsdd-init.sh
EnvironmentFile=-/run/sysconfig/wsdd
ExecStart=/usr/sbin/wsdd --shortlog -c /run/wsdd $WSDD_ARGS
ExecStartPost=/usr/bin/rm /run/
sysconfig/wsdd
User=wsdd
Group=wsdd

[Install]
WantedBy=multi-user.target

Reading the documentation you find out that the daemon runs chrooted – which is a reasonable security measure.
Opensuse even provides an elementary configuration file in “/etc/sysconfig/wsdd“.

I used the parameter

WSDD_WORKGROUP=”MYWORKGROUP”

there to announce the right Workgroup for my (virtualized) Samba server.

So, I had everything ready to start WSDD by “rcwsdd start” (or by “systemctl start wsdd.service”) on my Samba server.

On the local firewall of the SMB server I opened

  • port 445 (TCP) for SMB(3) In/Out for the server and from/to the Win-10-Client,
  • port 3702 (UDP) for incoming packets to the server and outgoing packets from the server to the Multicast address 239.255.255.250,
  • port 5357 (TCP) In/Out for the server and from/to the Win 10 client.

And: I closed all NetBIOS ports (UDP 137, 138 / TCP 139) and eventually stopped the “nmbd”-service on the Samba server! (UDP 137, 138 / TCP 139)

Within a second or so, my Samba 4 server appeared in the Windows 10 Explorer!

Further hints:
As the 3702 port is used with the UDP protocol it should be regarded as potentially dangerous. See: https://blogs.akamai.com/sitr/2019/09/new-ddos-vector-observed-in-the-wild-wsd-attacks-hitting-35gbps.html
The port 1900 which appeared in the firewall logs does not seem to be important. I blocked it.

So far, so good. However, when I refreshed the list in the Win 10 Explorer my SAMBA server disappeared again. 🙁

What you should do: Take special care about the network interface to which the WSDD service gets attached to

It took me a while to find out that the origin of the last problem had to do with the fact that my virtualized server and my Win 10 client both had multiple network interfaces on virtualized bridges. There are no loops in the configuration, but it occurred that multiple broadcasts packets arrive via different paths at the Samba server and were answered – and thus multiple return messages appeared at the Win 10 client during a refresh – which Win 10 did not like (see the discussion in the following link.
https://github.com/christgau/wsdd/issues/8

As soon as I restricted the answer of the Samba server to exactly one of the interfaces on my virtual bridge via the the parameter “WSDD_INTERFACES” in the “/etc/sysconfig/wsdd”-configuration file everything went fine. Refreshes now lead to an immediate update including the Samba server.

So, be a little careful, when you have some complicated bridge structures associated with your virtualized VMware or KVM guests. The WSDD service should be limited to exactly one interface of the Samba server.

Note: As we do not need NetBIOS any longer – block ports 137, 138 (UDP) and 139 (TCP) in your firewalls! It will make you feel better instantaneously.

Conclusion

The “end” of SMB V1 on Win 10 is a reasonable step. However, it undermines the visibility of Samba servers in the Windows Explorers. The reason is that NetBIOS requires SMB1.0 features on Windows. NetBIOS is/was therefore consistently deactivated on Win 10, too. The service detection on the network is replaced by the WSD service which was originally introduced for printer detection (and possibly other devices). Activating it on the Win 10 system may help with the detection of other Windows (8 and 10) systems on the network, but not with Samba 4 servers. Samba servers presently only serve NetBIOS requests of Win clients
to allow for server and share detection. Therefore, without additional measures, they are not displayed in the Windows Explorer of a regular Win 10 client.

This does, however, not restrict the usage of Samba shares on the Win 10 client via the SMB3 protocol. They can be used as “network drives” – just as before. Not distributing name and device information on a network has its advantages regarding security.

If you absolutely must see your Samba servers in the Win 10 Explorer install and configure the WSDD package of Steffen Christgau. You can use it as a systemd service. You should restrict the interfaces WSDD gets attached to – especially if your Samba servers are attached to virtual network bridges (Linux bridges or VMware bridges).

So:

  • Disable SMBV1 in Windows 10 if an update has not yet done it for you!
  • Set the protocol in the Samba servers to SMBV3!
  • Try to work with “networks drives” on your Win 10 guests, only!
  • Install, configure and use WSDD, if you really need to see your Samba servers in the Windows Explorer.
  • Open the port 445 (TCP, IN/OUT between the Win 10 client and the server), 3072 (UDP, OUT from the server and the Win 10 client to 239.255.255.250, IN to the server from the Win 10 client / IN to the Win 10 client from the server; rules details depending on the firewall location), port 5357 (TCP; In/OUT between the Samba server and the Win 10 client) on your firewalls between the Samba server and the Win 10 system.
  • Close the NetBIOS ports in your firewalls!
  • You should also take care of stopping multicast messages leaving perimeter firewalls; normally packets to multicast addresses should not be routed, but blocking them explicitly for certain interfaces is no harm, either.

Of course you must repeat the WSDD and firewall setup for all your Samba servers. But as a Linux admin you have your tools for distributing common configuration files or copying virtualization setups.

Links

The real story
!!!! https://www.ixsystems.com/community/resources/how-to-kill-off-smb1-netbios-wins-and-still-have-windows-network-neighbourhood-better-than-ever.106/ !!!

https://forums.linuxmint.com/viewtopic.php?p=1799875

https://devanswers.co/discover-ubuntu-machines-samba-shares-windows-10-network/

https://bugs.launchpad.net/ubuntu/ source/ samba/ +bug/ 1831441

https://forums.opensuse.org/ showthread.php/ 540083-Samba-Network-Device-Type-for-Windows-10

https://kofler.info/zugriff-auf-netzwerkverzeichnisse-mit-nautilus/

WSDD and its problems
https://github.com/christgau/wsdd
https://github.com/christgau/wsdd/issues/8
https://forums.opensuse.org/ showthread.php/ 540083-Samba-Network-Device-Type-for-Windows-10

Warnings of SMB V1
https://docs.microsoft.com/de-de/windows-server/storage/file-server/troubleshoot/detect-enable-and-disable-smbv1-v2-v3
https://blog.malwarebytes.com/101/2018/12/how-threat-actors-are-using-smb-vulnerabilities/
https://securityboulevard.com/2018/12/whats-the-problem-with-smb-1-and-should-you-worry-about-smb-2-and-3/
https://techcommunity.microsoft.com/t5/storage-at-microsoft/stop-using-smb1/ba-p/425858
https://www.cubespotter.de/cubespotter/wannacry-nsa-exploits-und-das-maerchen-von-smbv1/

Problems with Win 10 and shares
https://social.technet.microsoft.com/ Forums/ en-US: cannot-connect-to-cifs-smb-samba-network-shares-amp-shared-folders-in-windows-10-after-update?forum=win10itpronetworking

RDMA and SMB Direct
https://searchstorage.techtarget.com/ definition/ Remote-Direct-Memory-Access

Other settings in the SMB/Samba environment of minor relevance
http://woshub.com/cannot-access-smb-network-shares-windows-10-1709/
https://superuser.com/questions/1466968/unable-to-connect-to-a-linux-samba-server-via-hostname-on-windows-10
https://superuser.com/questions/1522896/windows-10-cannot-connect-to-linux-samba-shares-except-from-smb1-cifs
https://www.reddit.com/ r/ techsupport/ comments/ 3yevip/ windows 10 cant see samba shares/
https://devanswers.co/network-error-problem-windows-cannot-access-hostname-samba/

 

Fun with veth-devices, Linux bridges and VLANs in unnamed Linux network namespaces – VIII

In the last post of this series

Fun with veth-devices, Linux bridges and VLANs in unnamed Linux network namespaces – VII [Theoretical considerations regarding the connection of a network namespace or container to two separated VLANs]

we discussed two different approaches to connect a network namespace (or container) “netns9” to two (or more) separated VLANs. Such a network namespace could e.g. represent an administrative system (for example in form of a LXC container) for both VLANs. It has its own connection to the virtual Linux bridge which technically defines the VLANs by special port configurations. See the picture below, where we represented a VLAN1 by a member network namespace netns1 and a VLAN2 by a member netns4:

The solution on the left side is based on a bridge in an intermediate network namespace and packet tagging up into the namespace for the VLANs’ common member system netns9. The approach on the right side of the graphics uses a bridge, too, but without packet tagging along the connection to the common VLAN member system. In our analysis in the last post we assumed that we would have to compensate for this indifference by special PVID/VID settings.

The previous articles of this series already introduced general Linux commands for network namespace creation and the setup of VLANs via Linux bridge configurations. See e.g.: Fun with … – IV [Virtual VLANs for network namespaces (or containers) and rules for VLAN tagging at Linux bridge ports]. We shall use these methods in the present and a coming post to test configurations for a common member of two VLANs. We want to find out whether the theoretically derived measures regarding route definitions in netns9 and special PVID/VID-settings at the bridge work as expected. A test of packet filtering at bridge ports which we regarded as important for security is, however, postponed to later posts.

Extension of our test environment

First, we extend our previous test scenario by yet another network namespace “netns9“.

Our 2 VLANs in the test environment are graphically distinguished by “green” and “pink” tags (corresponding to different VLAN ID numbers). netns9 must be able to communicate with systems in both VLANs. netns9 shall, however, not become a packet forwarder between the VLANs; the VLANs shall remain separated despite the fact that they have a common member. We expect, that a clear separation of communication paths to the VLANs requires a distinction between network targets already inside netns9.

Bridge based solutions with packet tagging and veth sub-interfaces

There are two rather equivalent solutions for the connection of netns9 to brx in netns3; see the schematic graphics below:

Both solutions are based on veth sub-interfaces inside netns9. Thus, both VLAN connections are properly terminated in netns9. The approach depicted on the right side of the graphics uses a pure trunk port at the bridge; but also this solutions makes use of packet tagging between brx and netns9.

Note that we do not need to used tagged packets along the connections from bridge brx to netns1, netns2, netns4, netns5. The VLANs are established by the PVID/VID settings at the bridge ports and forwarding rules inside a VLAN aware bridge. Note also that our test environment contains an additional bridge bry and additional network namespaces.

We first concentrate on the solution on the left side with veth sub-interfaces at the bridge. It is easy to switch to a trunk port afterwards.

The required commands for the setup of the test environment are given below; you may scroll and copy the commands to the prompt of a terminal window for a root shell:

unshare --net --uts /bin/bash &
export pid_netns1=$!
unshare --net --uts /bin/bash &
export pid_netns2=$!
unshare --net --uts /bin/bash &
export pid_netns3=$!
unshare --net --uts /bin/bash &
export pid_netns4=$!
unshare --net --uts /bin/bash &
export pid_netns5=$!
unshare --net --uts /bin/bash &
export pid_netns6=$!
unshare --net --uts /bin/bash &
export pid_netns7=$!
unshare --net --uts /bin/bash &
export pid_netns8=$!
unshare --net --uts /bin/bash &
export pid_netns9=$!


# assign different hostnames  
nsenter -t $pid_netns1 -u hostname netns1
nsenter -t $pid_netns2 -u hostname netns2
nsenter -t $pid_netns3 -u hostname netns3
nsenter -t $pid_netns4 -u hostname netns4
nsenter -t $pid_netns5 -u hostname netns5
nsenter -t $pid_netns6 -u hostname netns6
nsenter -t $pid_netns7 -u hostname netns7
nsenter -t $pid_netns8 -u hostname netns8
nsenter -t $pid_netns9 -u hostname netns9
     

#set up veth devices in netns1 to netns4 and in netns9 with connections to netns3  
ip link add veth11 netns $pid_netns1 type veth peer name veth13 netns $pid_netns3
ip link add veth22 netns $pid_netns2 type veth peer name veth23 netns $pid_netns3
ip link add veth44 netns $pid_netns4 type veth peer name veth43 netns $pid_netns3
ip link add veth55 netns $pid_netns5 type veth peer name veth53 netns $pid_netns3
ip link add veth99 netns $pid_netns9 type veth peer name veth93 netns $pid_netns3

#set up veth devices in netns6 and netns7 with connection to netns8   
ip link add veth66 netns $pid_netns6 type veth peer name veth68 netns $pid_netns8
ip link add veth77 netns $pid_netns7 type veth peer name veth78 netns $pid_netns8

# Assign IP addresses and set the devices up 
nsenter -t $pid_netns1 -u -n /bin/bash
ip addr add 192.168.5.1/24 brd 192.168.5.255 dev veth11
ip link set veth11 up
ip link set lo up
exit
nsenter -t $pid_netns2 -u -n /bin/bash
ip addr add 192.168.5.2/24 brd 192.168.5.255 dev veth22
ip link set veth22 up
ip link set lo up
exit
nsenter -t $pid_netns4 -u -n /bin/bash
ip addr add 192.168.5.4/24 brd 192.168.5.255 dev veth44
ip link set veth44 up
ip link set lo up
exit
nsenter -t $pid_netns5 -u -n /bin/bash
ip addr add 192.168.5.5/24 brd 192.168.5.255 dev veth55
ip link set veth55 up
ip link set lo up
exit
nsenter -t $pid_netns6 -u -n /bin/bash
ip addr add 192.168.5.6/24 brd 192.168.5.255 dev veth66
ip link set veth66 up
ip link set lo up
exit
nsenter -t $pid_netns7 -u -n /bin/bash
ip addr add 192.168.5.7/24 brd 192.168.5.255 dev veth77
ip link set veth77 up
ip link set lo up
exit
nsenter -t $pid_netns9 -u -n /bin/bash
ip addr add 192.
168.5.9/24 brd 192.168.5.255 dev veth99
ip link set veth99 up
ip link set lo up
exit

# set up bridge brx and its ports 
nsenter -t $pid_netns3 -u -n /bin/bash
brctl addbr brx  
ip link set brx up
ip link set veth13 up
ip link set veth23 up
ip link set veth43 up
ip link set veth53 up
brctl addif brx veth13
brctl addif brx veth23
brctl addif brx veth43
brctl addif brx veth53
exit

# set up bridge bry and its ports 
nsenter -t $pid_netns8 -u -n /bin/bash
brctl addbr bry  
ip link set bry up
ip link set veth68 up
ip link set veth78 up
brctl addif bry veth68
brctl addif bry veth78
exit

# set up 2 VLANs on each bridge 
nsenter -t $pid_netns3 -u -n /bin/bash
ip link set dev brx type bridge vlan_filtering 1
bridge vlan add vid 10 pvid untagged dev veth13
bridge vlan add vid 10 pvid untagged dev veth23
bridge vlan add vid 20 pvid untagged dev veth43
bridge vlan add vid 20 pvid untagged dev veth53
bridge vlan del vid 1 dev brx self
bridge vlan del vid 1 dev veth13
bridge vlan del vid 1 dev veth23
bridge vlan del vid 1 dev veth43
bridge vlan del vid 1 dev veth53
bridge vlan show
exit
nsenter -t $pid_netns8 -u -n /bin/bash
ip link set dev bry type bridge vlan_filtering 1
bridge vlan add vid 10 pvid untagged dev veth68
bridge vlan add vid 20 pvid untagged dev veth78
bridge vlan del vid 1 dev bry self
bridge vlan del vid 1 dev veth68
bridge vlan del vid 1 dev veth78
bridge vlan show
exit

#Create a veth device to connect the two bridges 
ip link add vethx netns $pid_netns3 type veth peer name vethy netns $pid_netns8
nsenter -t $pid_netns3 -u -n /bin/bash
ip link add link vethx name vethx.50 type vlan id 50
ip link add link vethx name vethx.60 type vlan id 60
brctl addif brx vethx.50
brctl addif brx vethx.60
ip link set vethx up
ip link set vethx.50 up
ip link set vethx.60 up
bridge vlan add vid 10 pvid untagged dev vethx.50
bridge vlan add vid 20 pvid untagged dev vethx.60
bridge vlan del vid 1 dev vethx.50
bridge vlan del vid 1 dev vethx.60
bridge vlan show
exit

nsenter -t $pid_netns8 -u -n /bin/bash
ip link add link vethy name vethy.50 type vlan id 50
ip link add link vethy name vethy.60 type vlan id 60
brctl addif bry vethy.50
brctl addif bry vethy.60
ip link set vethy up
ip link set vethy.50 up
ip link set vethy.60 up
bridge vlan add vid 10 pvid untagged dev vethy.50
bridge vlan add vid 20 pvid untagged dev vethy.60
bridge vlan del vid 1 dev vethy.50
bridge vlan del vid 1 dev vethy.60
bridge vlan show
exit

# Add subinterfaces in netns9
nsenter -t $pid_netns9 -u -n /bin/bash
ip link add link veth99 name veth99.10 type vlan id 10
ip link add link veth99 name veth99.20 type vlan id 20
ip link set veth99 up
ip link set veth99.10 up
ip link set veth99.20 up
exit

# Add subinterfaces in netns9
nsenter -t $pid_netns3 -u -n /bin/bash
ip link add link veth93 name veth93.10 type vlan id 10
ip link add link veth93 name veth93.20 type vlan id 20
ip link set veth93 up
ip link set veth93.10 up
ip link set veth93.20 up
brctl addif brx veth93.10
brctl addif brx veth93.20
bridge vlan add vid 10 pvid untagged dev veth93.10
bridge vlan add vid 20 pvid untagged dev veth93.20
bridge vlan del vid 1 dev veth93.10
bridge vlan del vid 1 dev veth93.20
exit

 
We just have to extend the command list of the experiment conducted already in the second to last post by some more lines which account for the setup of netns9 and its connection to the bridge “brx” in netns3.

Now, we open a separate terminal, which inherits the defined environment variables (e.g. on KDE by “konsole &>/dev/null &”), and try a ping from netns9 to netns7:

mytux:~ # nsenter -t $pid_netns9 
-u -n /bin/bash
netns9:~ # ping 192.168.5.1
PING 192.168.5.1 (192.168.5.1) 56(84) bytes of data.
^C
--- 192.168.5.1 ping statistics ---
2 packets transmitted, 0 received, 100% packet loss, time 1008ms

netns9:~ # ping 192.168.5.7
PING 192.168.5.7 (192.168.5.7) 56(84) bytes of data.
^C
--- 192.168.5.7 ping statistics ---
2 packets transmitted, 0 received, 100% packet loss, time 1006ms

netns9:~ # 

Obviously, the pings failed! The reason is that we forgot to set routes in netns9! Such routes are, however, vital for the transport of e.g. ARP answering and request packets from netns9 to members of the two VLANs. See the last post for details. We add the rules for the required routes:

#Set routes in netns9 
nsenter -t $pid_netns9 -u -n /bin/bash
route add 192.168.5.1 veth99.10                                                     
route add 192.168.5.2 veth99.10                                                    
route add 192.168.5.4 veth99.20
route add 192.168.5.5 veth99.20                                                    
route add 192.168.5.6 veth99.10
route add 192.168.5.7 veth99.20
exit

By these routes we, obviously, distinguish different paths: Packets heading for e.g. netns1 and netns2 go through a different interface than packets sent e.g. to netns4 and netns5. Now, again, in our second terminal window:

mytux:~ # nsenter -t $pid_netns9 -u -n /bin/bash 
netns9:~ # ping 192.168.5.1 -c2
PING 192.168.5.1 (192.168.5.1) 56(84) bytes of data.
64 bytes from 192.168.5.1: icmp_seq=1 ttl=64 time=0.067 ms
64 bytes from 192.168.5.1: icmp_seq=2 ttl=64 time=0.083 ms

--- 192.168.5.1 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.067/0.075/0.083/0.008 ms
netns9:~ # ping 192.168.5.7 -c2
PING 192.168.5.7 (192.168.5.7) 56(84) bytes of data.
64 bytes from 192.168.5.7: icmp_seq=1 ttl=64 time=0.079 ms
64 bytes from 192.168.5.7: icmp_seq=2 ttl=64 time=0.078 ms

--- 192.168.5.7 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.078/0.078/0.079/0.008 ms
netns9:~ # ping 192.168.5.4 -c2
PING 192.168.5.4 (192.168.5.4) 56(84) bytes of data.
64 bytes from 192.168.5.4: icmp_seq=1 ttl=64 time=0.151 ms
64 bytes from 192.168.5.4: icmp_seq=2 ttl=64 time=0.076 ms

--- 192.168.5.4 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.076/0.113/0.151/0.038 ms

 
Thus, we have confirmed our conclusion from the last article that we need route definitions in a common member of two VLANs if and when we terminate tagged connection lines by veth sub-interfaces inside such a network namespace or container.

But are our VLANs still isolated from each other?
We open another terminal and try pinging from netns1 to netns4, netns7 and netns2:

mytux:~ # nsenter -t $pid_netns1 -u -n /bin/bash
netns1:~ # ping 192.168.5.4
PING 192.168.5.4 (192.168.5.4) 56(84) bytes of data.
^C
--- 192.168.5.4 ping statistics ---
3 packets transmitted, 0 received, 100% packet loss, time 2015ms

netns1:~ # ping 192.168.5.7
PING 192.168.5.7 (192.168.5.7) 56(84) bytes of data.
^C
--- 192.168.5.7 ping statistics ---
2 packets transmitted, 0 received, 100% packet loss, time 1007ms

netns1:~ # ping 192.168.5.2
PING 192.168.5.2 (192.168.5.2) 56(84) bytes of data.
64 bytes from 192.168.5.2: icmp_seq=1 ttl=64 time=0.195 ms
64 bytes from 192.168.5.2: icmp_seq=2 ttl=64 time=0.102 ms
^C
--- 192.168.5.
2 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.102/0.148/0.195/0.048 ms
netns1:~ # 

And in reverse direction :

mytux:~ # nsenter -t $pid_netns5 -u -n /bin/bash                                               
netns5:~ # ping 192.168.5.4
PING 192.168.5.4 (192.168.5.4) 56(84) bytes of data.                                           
64 bytes from 192.168.5.4: icmp_seq=1 ttl=64 time=0.209 ms                                     
64 bytes from 192.168.5.4: icmp_seq=2 ttl=64 time=0.071 ms                                     
^C                                                                                             
--- 192.168.5.4 ping statistics ---                                                            
2 packets transmitted, 2 received, 0% packet loss, time 999ms                                  
rtt min/avg/max/mdev = 0.071/0.140/0.209/0.069 ms                                              
netns5:~ # ping 192.168.5.1
PING 192.168.5.1 (192.168.5.1) 56(84) bytes of data.                                           
^C                                                                                             
--- 192.168.5.1 ping statistics ---
2 packets transmitted, 0 received, 100% packet loss, time 1008ms

netns5:~ # 

Good! As expected!

Forwarding between two VLANs?

We have stressed in the last post that setting routes should clearly be distinguished from “forwarding” if we want to keep our VLANs separated:

We have NOT enabled forwarding in netns9. If we had done so we would have lost the separation of the VLANs and opened a direct communication line between the VLANs.

Let us – just for fun – test the effect of forwarding in netns9:

netns9:~ # echo 1 > /proc/sys/net/ipv4/conf/all/forwarding
netns9:~ # 

But still:

netns5:~ # ping 192.168.5.1
PING 192.168.5.1 (192.168.5.1) 56(84) bytes of data.
^C
--- 192.168.5.1 ping statistics ---
3 packets transmitted, 0 received, 100% packet loss, time 1999ms

Enabling forwarding in netns9 alone is obviously not enough to enable a packet flow in both directions! A little thinking , however, shows:

If we e.g. want ARP resolution and pinging from netns5 to netns1 to work via netns9 we must establish further routes both in netns1 and netns5. Reason: Both network namespaces must be informed that netns9 now works as a gateway for both request and answering packets:

netns1:~ # route add 192.168.5.5 gw 192.168.5.9
netns5:~ # route add 192.168.5.1 gw 192.168.5.9

Eventually:

netns5:~ # ping 192.168.5.1
PING 192.168.5.1 (192.168.5.1) 56(84) bytes of data.
64 bytes from 192.168.5.1: icmp_seq=1 ttl=63 time=0.186 ms
64 bytes from 192.168.5.1: icmp_seq=2 ttl=63 time=0.134 ms
^C
--- 192.168.5.1 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.134/0.160/0.186/0.026 ms
netns5:~ # 

So, yes, forwarding outside the bridge builds a connection between otherwise separated VLANs. In connection with a packet filter this could be used to allow some hosts of a VLAN1 to reach e.g. some servers in a VLAN2. But this is not the topic of this post. So, do not forget to disable the forwarding in netns9 again for further experiments:

netns9:~ # echo 0 > /proc/sys/net/ipv4/conf/all/forwarding
netns9:~ # 

Bridge based solutions with packet tagging and a trunk port at the Linux bridge

The following commands replace the sub-interface ports veth93.10 and veth93.20 at the bridge by a single trunk port:

# Change veth93 to trunk like interface in brx 
nsenter -t $pid_netns3 -u -n /bin/bash
brctl delif brx veth93.10
brctl delif brx veth93.20
ip link del dev veth93.10
ip link del dev veth93.20
brctl addif brx veth93
bridge vlan add vid 10 tagged dev veth93
bridge vlan add vid 20 tagged dev veth93
bridge vlan del vid 1 dev veth93
bridge vlan show
exit 

Such a solution works equally well:

netns9:~ # ping 192.168.5.4 -c2
PING 192.168.5.4 (192.168.5.4) 56(84) bytes of data.
64 bytes from 192.168.5.4: icmp_seq=1 ttl=64 time=0.145 ms
64 bytes from 192.168.5.4: icmp_seq=2 ttl=64 time=0.094 ms

--- 192.168.5.4 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.094/0.119/0.145/0.027 ms
netns9:~ # ping 192.168.5.6 -c2
PING 192.168.5.6 (192.168.5.6) 56(84) bytes of data.
64 bytes from 192.168.5.6: icmp_seq=1 ttl=64 time=0.177 ms
64 bytes from 192.168.5.6: icmp_seq=2 ttl=64 time=0.084 ms

--- 192.168.5.6 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.084/0.130/0.177/0.047 ms
netns9:~ # 

Summary and outlook

It is easy to make a network namespace or container a common member of two separate VLANs realized by a Linux bridge. You have to terminate virtual veth connections, which transport tagged packets from both VLANs, properly inside the common target namespace by sub-interfaces. As long as we do not enable forwarding in the common namespace the VLANs remain separated. But routes need to be defined to direct packets from the common member to the right VLAN.

In the next post we look at commands to realize a connection of bridge based VLANs to a common network namespace with untagged packets. Such solutions are interesting for connecting multiple virtual VLANs to routers to external networks.