Eclipse Oxygen3 – old bug blocks certain key combinations in editors – e.g. Ctrl+Right/Left for next or previous word

After changing to Eclipse Oxygen 3 for my PHP work I have spent an hour to find out out what was wrong with the keyboard actions for navigating through code. One of the key combinations one typically needs is “Ctrl >” and “Ctrl <” to jump from one word to the other – more precisely between some whitespace/letter-combinations which are interpreted as word separation borders.

Whenever I restarted or reopened Oxygen3 the already opened editors on files I had worked with during the last session did not show any reaction to such key combinations. However, when I closed the file and reopened them again with the structured PHP-editor the key combination did work. But after a restart of the workspace no reaction again. It really took me a while to find out that all this was due to the “welcome” screen, which I had not deactivated, yet, in the new installation. After knowing this, I even did find a corresponsing bug and stack overflow report.

https://stackoverflow.com/questions/18341928/eclipse-ctrlright-does-nothing

Just deeactivating the welcome screen did the trick. I find it very frustrating that this is really a rather old bug – and I could bet it cost a lot of people nerves and useless efforts.

MySQL/MariaDB, MyISAM – DROP INDEX, CREATE INDEX oder ALTER TABLE- Statements?

Im Zuge eines datenbank-lastigen PHP-Projektes stolperte ich gerade über ein Problem, bei dem etwa 20 MyISAM-Tabellen um relative viele generierte Datensätze ergänzt werden müssen. Nun greife ich ja schon von Haus aus zu den üblichen Maßnahmen: einer Behandlung möglichst vieler Records in in einem INSERT-Statement oder aber im Fall großer Record-Anzahlen auch zum Umweg über Dateien und LOAD DATA INFILE.

Beim Einsatz von LOAD DATA INFILE ist es klug, auf Indices erstmal zu verzichten. D.h., man wählt folgende Vorgehensweise:

  • Schritt 1: Ggf. TRUNCATE TABLE,
  • Schritt 2: Elimination erforderlicher Indices,
  • Schritt 3: Durchführung von LOAD DATA INFILE,
  • Schritt 4: Aufbau der Indices

Das ist nach meiner Erfahrung immer schneller als ein LOAD DATA INFILE bei gleichzeitigem Update mehrerer aktiver Indices.

Die Performance von “LOAD DATA INFILE” ist dann zwar sehr gut, aber das Löschen/Anlegen von Indices kostet im Vergleich u.U. erheblich (!) Zeit. Also ist man bemüht, auch an dieser Ecke da noch etwas an Performance herauszuholen.

“ALTER TABLE tablename DROP INDEX” statt “DROP INDEX indexname ON tablename”

Mein erster Tipp aufgrund der aktuellen Erfahrungen ist, nicht den bequemen Weg des SQL-Statements “DROP INDEX” zu wählen. Es zeigt sich, dass ein Statement der Art:

ALTER TABLE tablename DROP INDEX indexname

auf MyISAM-Tabellen fast immer um einen spürbaren Betrag schneller ist als

DROP INDEX indexname ON tablename

Man gewinnt mit “ALTER TABLE” zwischen 30% bis 45% an Schnelligkeit.

Was ist mit mehreren Indices?

Als PHP-Entwickler neigt man dazu, bekannte Indices in einem Loop – also nacheinander – zu löschen. Threading auf der PHP-Seite ist auf den meisten Web-Servern ja nicht gegeben. Es geht dennoch schneller. Das “ALTER TABLE” Statement bietet nämlich die Möglichkeit, mehrere zu eliminierende Indices anzugeben:

ALTER TABLE tablename DROP INDEX indexname1, DROP INDEX indexname2, DROP INDEX indexname3, …

Und siehe da, in einem Testbeispiel ging die Zeit in einem Testbeispiel mit einer kleineren Tabelle mit drei Indices von 0,14 Sek auf 0,072 Sek runter. Das sind in meinem Fall dann also nochmal ca. 45% Reduktion. Ich erkläre mir das in meinem Fall so, dass der Datenbankserver dabei 2 Prozessor-Cores einsetzen kann.

Wie sieht es bei CREATE INDEX aus?

Auch das Aufbauen der Indices geht mit

ALTER TABLE tablename ADD INDEX indexname1, ADD INDEX indexname2, ADD INDEX indexname3, …

deutlich schneller als mit einem “Create Index”-Statement.

Merke:
Benötigt man optimale Performance beim Löschen oder beim Aufbau von Indices, so sind “ALTER TABLE”-Statements den klassischen “Drop Index”- oder “CREATE INDEX”-Statements vorzuziehen. Das gilt im besonderen bei MySQL/MariaDB-Datenbankservern mit mehreren Prozessorcores.

PHP, MariaDB, Load Data Infile – manchmal ist der Umweg über Dateien performanter ….

Im Moment bin ich wider mit LAMP-Entwicklung beschäftigt. Mit Simulationen zu technischen Netzwerken in mehreren Dimensionen mit vielen Knoten, die kreuz und quer verbunden sein können. In solchen Netzen gibt es u.U. eine mit der Knotenmenge exponentiell wachsende Anzahl von Pfaden. Die Simulation des Informationstransports durch solche Netze ist ähnlich zum Transport von Signalen in “künstlichen neuronalen Netzwerken” – in unserem Fall ist aber die Komplexität aufgrund der Netzstruktur und der Qualität der transportierten Information erheblich größer.

Das Ziel meiner Auftraggeber sind datenbankgestützte Simulationen solcher technischen Netze mit PHP. Bei einer hinreichenden Anzahl von Knoten, Ebenen und Verbindungen erhält man dabei u.U. erhebliche Datenmengen, die man während der laufenden Rechnung systematisch auslagern muss. Das ist in Forschungslabors mit einer Armada von Prozessoren und SSDs nun heute selten ein grundsätzliches Problem. Im einem kleinen Büro oder auf billigen LAMP-Servern aber sehr wohl – insbesondere dann, wenn man nicht mit Multithreading in Web-Server-Umgebungen beginnen will oder aus Sicherheitsgründen gar nicht kann (pthread etc,. lassen das in Webumgebungen gar nicht zu). Oft hilft dann ein kleiner Umweg – und der führt u.U. über Ajax, Web-Clients und Dateien.

Ausgangslage

Aus bestimmten Gründen sollen die Berechnungen meiner Kunden auf LAMP-Servern angeboten werden. Hochgradige Programm-Effizienz ist also ein Muss. Günstige virtualisierte Mittelklasse-Server haben oft eine Ausstattung mit 4-6 Prozessoren, mehreren GB RAM und SSD-Speicherplatz. Zwei Prozessoren sollen ggf. einen Apache-Server mit PHP-Modul stützen, zwei andere eine Hauptdatenbank, die während der Simulation benutzt wird, und ein fünfter ggf. eine Bank für Ergebnisdaten.

Nun macht jeder mal die Erfahrung, dass Datenbank-INSERTs in der Regel grundsätzlich zu den langsamen Transaktionen zählen. Zudem behindern sie in einem PHP-Programm die Ausführung weiterer datengenerierender Funktionen, die möglicherweise gar nicht – oder zumindest nicht zeitnah – von den erzeugten Outputdaten abhängig sind. So kann es je nach Breite von Records schon mal im Bereich von Sekunden dauern, wenn man mehrere hunderttausend Datensätze “on the fly” in Datenbank-Tabellen schreiben will – und dabei auch noch mehrere Indices aufgebaut werden sollen. Wertvolle Zeit, in der andere Dinge – nämlich weitere numerische Berechnungen – passieren könnten. Wie kann man da CPU-Zeit sparen bzw. sinnvoll nutzen?

Ajax und der Web-Client zur Multitasking-Steuerung für Arme

Man vergisst oft, dass bei gut separierbaren Aufgaben auch der (Web-) Client ins Spiel gebracht werden kann. So kann ein Client über Ajax zwei (oder mehr) PHP-Threads auf einem Apache-Server starten – jeder in einer eigenen Umgebung (memory-, session- und prozess-bezogen). Per Ajax kann man den zweiten Prozess auch periodisch – und in Abhängigkeit von zwischenzeitlich dokumentierten Ergebnissen des kontinuierlich laufenden ersten Prozesses starten.

Der Hauptprozess – in unserem Fall unsere Simulation – kann dabei mit den weiteren periodisch gestarteten Prozessen signalartig über ein gemeinsames Medium kommunizieren – nämlich über spezielle Tabelleneinträge in der Datenbank. Die periodischen Jobs lesen diese Information aus und verhalten sich entsprechend. Ergebnisse werden per Ajax an den Client übermittelt, der dann weitere Nachfolgeaktionen einleitet.

Diese Art von getriggertem “Multitasking” über einen zentralen Web-Client und einen vermittelnde Ajax-Schicht hat einige Vorteile bei langwierigen Prozessen – wie etwa Simulationsläufen. Eine typische Anwendung ist etwa das Status-Polling zum Simulationsprozess. Ich hatte darüber bereits früher in diesem Blog berichtet.

Umgang mit großen zwischen-zeitlich aufkommenden Ergebnisdaten

Wie können wir das nun nutzen, um
zwischenzeitlich produzierte große Datenmengen halbwegs schnell in eine Datenbank aufzuräumen? Man vergisst im LAMP-Geschäft zu oft Dateien als Austauschmedium und als Puffer. MariaDB/MySQL-Systeme bieten zudem einen hochgradig effizienten Weg an, große Datenmengen in flache Tabellen einzulesen, nämlich “LOAD DATA INFILE”:

Vergleicht man die Zeit, die man in einem ausreichend mit RAM gepufferten System mit Write-Caching auf Linux-Ebene benötigt, um strukturierte Daten in ein File zuschreiben, so wird man feststellen, dass das u.U. erheblich (!) weniger Zeit kostet, als zwischenzeitlich eine Datenbanktabelle zu befüttern. Das gilt auch dann noch, wenn man die Zeit hinzurechnet, die ein LOAD DATA INFILE der MariaDB für das Füllen einer Tabelle aus den insgesamt generierten CSV-Filedaten (mit ggf. Millionen Datensätzen) benötigt. Das Schreiben in ein File, das anschließende Laden in eine Tabelle einer ansonsten wenig ausgelasteten Bank (ohne gleichzeitige Index-Generierung!) und die nachträgliche Erzeugung von Indices ist i.d.R. immer noch um Faktoren schneller als der direkte Transfer über (prepared) INSERTs – selbst wenn man hunderte Rows in ein INSERT-Statement packt. Zeit, die – wie gesagt – vom eigentlichen Simulationsprogramm genutzt werden kann!

Hinweis:
Ganz entscheidend für den effizienten Einsatz von “LOAD DATA INFILE” ist hierbei, alle Indices von der zu befüllenden Tabelle gelöscht zu haben, die Daten zu laden und erst danach die notwendigen Indices zu generieren. In all unseren Tests haben sich hierbei übrigens MyISAM-Tabellen performanter als InnoDB-Tabellen verhalten.

Schrittfolge

Wir werfen kurz einen Blick auf die Schrittfolge (habe leider gerade keine Zeit, schöne Grafiken zu zeichnen):

  • Schritt 1: Der Web-Client startet das Simulationsprogramm “S”, das durchgehend auf der Hauptdatenbank-Instanz arbeitet.
  • Schritt 2: Der Web-Client startet unmittelbar darauf auch noch zum ersten Mal und danach periodisch ein weiteres Programm “O”, das für die Behandlung von Output-Daten zuständig ist (sobald halt welche angefallen sind) und das dazu eine spezielle Tabelle der Hauptdatenbank auf Einträge zu fertiggestellten Output-Dateien abfragt. Der Client startet “periodisch” aber nur dann weitere Jobs vom Typ “O”, wenn er zuvor Statusmeldungen des aktuellen “O”-Prozesses erhalten hat, und sich der aktuelle “O”-Prozess beendet hat.
  • Schritt 3: Der zweite PHP-Prozess “O” widmet sich dann jeweils der zuletzt fertiggestellten Datei, prüft ggf. deren Struktur und übergibt dann die weitere Behandlung an einen LOAD DATA INFILE-Prozess der MariaDB – ggf. einer zweiten separaten Datenbank-Instanz, der eigene Prozessoren und memory-Anteile zugewiesen wurden.
  • Schritt 4: Nach einem erfolgreichen Laden der Daten durch den Prozess “O” beendet sich dieser, nachdem er dem Client noch eine Meldung per Ajax zugeschickt hat.
  • Schritt 5: Der Client startet ein weiteres Mal das für Outputs zuständige Programm vom Typ “O”.
    etc.

Das Ganze dauert so lange, bis vom Hauptprogramm ein “Signal” (per DB-Eintrag) gesetzt wurde, dass kein weiterer Output mehr zu erwarten ist.

Das Vorgehen entspricht einer Art selbstgesteuertem, dynamischen Batch-Processing von Daten auf einem LAMP-Server. Es erfordert ein wenig mehr Programmieraufwand (insbesondere zur Fehlerbehandlung) als ein Standard-Vorgehen im Rahmen eines einzigen Threads – es bringt u.U. aber Faktoren an Performance – solange die Simulation nicht auf Zwischenergebnisse in der Bank warten muss. Letzteres ist bei uns oft genug der Fall.

Wir haben so Programm-Läufe, die in Tests 25 Sekunden dauerten, auf unter 5 Sekunden gebracht. Es
war der Mühe wert – und wir können anderen, die langwierige PHP-Programme für Simulations-Berechnungen auf LAMP-Servern nur empfehlen, eine solche Vorgehensweise an kritischen Engpässen mal als Alternative zu untersuchen.

Zusammenfassung

Fallen bei langwierigen PHP/LAMP-Programmen zwischenzeitlich große Datenmengen an, können diese u.U. ohne Beeinträchtigung des Hauptprogramms parallel durch weitere PHP-Programme einer Behandlung durch eine Datenbank zugeführt werden. Teil der Steuerung kann dabei ein gemeinsamer Ajax-Client sein, der die Ergebnislieferung der verschiedenen PHP-Programme überwacht. Der Datenaustausch zwischen den parallel laufenden PHP-Prozessen erfolgt dabei über die Datenbank, Ajax-Meldungen und Datenfiles. Zur Behandlung großer Datenmengen kann dabei LOAD DATA INFILE seine Performance-Vorteile ausspielen. Insgesamt sind dadurch im Einzelfall erhebliche Programm-Beschleunigungen möglich.