Autoencoders, latent space and the curse of high dimensionality – II – a view on fragments and filaments of the latent space for CelebA images

I continue with experiments regarding the structure which an Autoencoder [AE] builds in its latent space. In the last post of this series

Autoencoders, latent space and the curse of high dimensionality – I

we have trained an AE with images of the CelebA dataset. The Encoder and the Decoder of the AE consist of a series of convolutional layers. Such layers have the ability to extract characteristic patterns out of input (image) data and save related information in their so called feature maps. CelebA images show human heads against varying backgrounds. The AE was obviously able to learn the typical features of human faces, hair-styling, background etc. After a sufficient number of training epochs the AE’s Encoder produces “z-points” (vectors) in the latent space. The latent space is a vector space which has a relatively low number of dimension compared with the number of image pixels. The Decoder of the AE was able to reconstruct images from such z-points which resembled the original closely and with good quality.

We saw, however, that the latent space (or “z-space”) lacks an important property:

The latent space of an Autoencoder does not appear to be densely and uniformly populated by the z-points of the training data.

We saw that his makes the latent space of an Autoencoder almost unusable for creative and generative purposes. The z-points which gave us good reconstructions in the sense of recognizable human faces appeared to be arranged and positioned in a very special way within the latent space. Below I call a CelebA related z-point for which the Decoder produces a reconstruction image with a clearly visible face a “meaningful z-point“.

We could not reconstruct “meaningful” images from randomly chosen z-points in the latent space of an Autoencoder trained on CelebA data. Randomly in the sense of random positions. The Decoder could not re-construct images with recognizable human heads and faces from almost any randomly positioned z-point. We got the impression that many more non-meaningful z-points exist in latent space than meaningful z-points.

We would expect such a behavior if the z-points for our CelebA training samples were arranged in tiny fragments or thin (and curved) filaments inside the multidimensional latent space. Filaments could have the structure of

  • multi-dimensional manifolds with almost no extensions in some dimensions
  • or almost one-dimensional string-like manifolds.

The latter would basically be described by a (wiggled) thin curve in the latent space. Its extensions in other dimensions would be small.

It was therefore reasonable to assume that meaningful z-points are surrounded by areas from which no reasonable interpretable image with a clear human face can be (re-) constructed. Paths from a “meaningful” z-point would only in a very few distinct directions lead to another meaningful point. As it would be the case if you had to follow a path on a thin curved manifold in a multidimensional vector space.

So, we had some good reasons to speculate that meaningful data points in the latent space may be organized in a fragmented way or that they lie within thin and curved filaments. I gave my readers a link to a scientific study which supported this view. But without detailed data or some visual representations the experiments in my last post only provided indirect indications of such a complex z-point distribution. And if there were filaments we got no clue whether these were one- or multidimensional.

Do we have a chance to get a more direct evidence about a fragmented or filamental population of the latent space? Yes, I think so. And this is the topic of this post.

However, the analysis is a bit complicated as we have to deal with a multidimensional space. In our case the number of dimensions of the latent space is z_dim = 256. No chance to plot any clusters or filaments directly! However, some other methods will help to reduce the dimensionality of the problem and still get some valid representations of the data point correlations. In the end we will have a very strong evidence for the existence of filaments in the AE’s z-space.

Methods to work with data distributions in many dimensions

Below I will use several methods to investigate the z-point distribution in the multidimensional latent space:

  • An analysis of the variation of the z-point number-density along coordinate axes and vs. radius values.
  • An application of t-SNE projections from the standard multidimensional coordinate system onto a 2-dimensional plane.
  • PCA analysis and subsequent t-SNE projections of the PCA-transformed z-point distribution and its most important PCA components down to a 2-dim plane. Note that such an approach corresponds to a sequence of projections:
    1) Linear projections onto PCA rotated coordinates.
    2) A non-linear SNE-projection which scales and represents data point correlations on different scales on a 2-dim plane.
  • A direct view on the data distribution projected onto flat planes formed by two selected coordinate axes in the PCA-coordinate system. This will directly reveal whether the data (despite projection effects exhibit filaments and voids on some (small ?) scales.
  • A direct view on the data distribution projected onto a flat plane formed by two coordinate axes of the original latent space.

The results of all methods combined strongly support the claim that the latent space is neither populated densely nor uniformly on (small) scales. Instead data points are distributed along certain filamental structures around voids.

Layer structure of the Autoencoder

Below you find the layer structure of the AE’s Encoder. It got four Conv2D layers. The Decoder has a corresponding reverse structure consisting of Conv2DTranspose layers. The full AE model was constructed with Keras. It was trained on CelebA for 24 epochs with a small step size. The original CelebA images were reduced to a size of 96×96 pixels.

Encoder

Decoder

Number density of z-points vs. coordinate values

Each z-point can be described by a vector, whose components are given by projections onto the 256 coordinate axes. We assume orthogonal axes. Let us first look at the variation of the z-point number density vs. reasonable values for each of the 256 vector-components.

Below I have plotted the number density of z-points vs. coordinate values along all 256 coordinate axes. Each curve shows the variation along one of the 256 axes. The data sampling was done on intervals with a width of 0.25:

Most curves look like typical Gaussians with a peak at the coordinate value 0.0 with a half-width of around 2.

You see, however, that there are some coordinates which dominate the spatial distribution in the latent vector-space. For the following components the number density distribution is relatively broad and peaks at a center different from the origin of the z-space. To pick a few of these coordinate axes:

 52, center:  5.0,  width: 8
 61; center;  1.0,  width: 3 
 73; center:  0.0,  width: 5.5  
 83; center: -0.5,  width: 5
 94; center:  0.0,  width: 4
116; center:  0.0,  width: 4
119; center:  1.0,  width: 3
130; center: -2.0,  width: 9
171; center:  0.7,  width: 5
188; center:  0.75, width: 2.75
200; center:  0.5,  width: 11
221; center: -1.0,  width: 8

The first number is just an index of the vector component and the related coordinate axis. The next plot shows the number density along some these specific coordinate axes:

What have we learned?
For most coordinate axes of the latent space the number density of the z-points peaks at 0.0. We see an approximate Gaussian form of the number density distribution. There are around 5 coordinate directions where the distribution has a peak significantly off the origin (52, 130, 171, 200, 221). Along the corresponding axes the distribution of z-points obviously has an elongated form.

If there were only one such special vector component then we would speak of an elongated, ellipsoidal and almost cigar like distribution with the thickest area at some position along the specific coordinate axis. For a combination of more axes with elongated distributions, each with with a center off the origin, we get instead diagonally oriented multidimensional and elongated shapes.

These findings show again that large regions of the latent space of an AE remain empty. To get an idea just imagine a three dimensional space with all data in x-direction culminating at a coordinate value of 5 with a half-width of lets say 8. In the other directions y and z we have our Gaussian distributions with a total half-width of 1 around the mean value 0. What do we get? A cigar like shape confined around the x-axis and stretching from -3 < x < 13. And the rest of the space: More or less empty. We have obviously found something similar at different angular directions of our multidimensional latent space. As the number of special coordinate directions is limited these findings tell us that a PCA analysis could be helpful. But let us first have a look at the variation of number density with the radius value of the z-points.

Number density of z-points vs. radius

We define a radius via an Euclidean L2 norm for our 256-dimensional latent space. Afterward we can reduce the visualization of the z-point distribution to a one dimensional problem. We can just plot the variation of the number density of z-points vs. the radius of the z-points.

In the first plot below the sampling of data was done on intervals of 0.5 .

The curve does not remain that smooth on smaller sampling intervals. See e.g. for intervals of width 0.05

Still, we find a pronounced peak at a radius of R=16.5. But do not get misguided: 16 appears to be a big value. But this is mainly due to the high number of dimensions!

How does the peak in the close vicinity of R=16 fit to the above number density data along the coordinate axes? Answer: Very well. If you assume a z-point vector with an average value of 1 per coordinate direction we actually get a radius of exactly R=16!

But what about Gaussian distributions along the coordinate axes? Then we have to look at resulting expectation values. Let us assume that we fill a vector of dimension 256 with numbers for each component picked statistically from a normal distribution with a width of 1. And let us repeat this process many times. Then what will the expectation value for each component be?

A coordinate value contributes with its square to the radius. The math, therefore, requires an evaluation of the integral integral[(x**2)*gaussian(x)] per coordinate. This integral gives us an expectation value for the contribution of each coordinate to the total vector length (on average). The integral indeed has a resulting value of 1.0. From this it follows that the expectation value for the distance according to an Euclidean L2-metric would be avg_radius = sqrt(256) = 16. Nice, isn’t it?

However, due to the fact that not all Gaussians along the coordinate axes peak at zero, we get, of course, some deviations and the flank of the number distribution on the side of larger radius values becomes relatively broad.

What do we learn from this? Regions very close to the origin of the z-space are not densely populated. And above a radius value of 32, we do not find z-points either.

t-SNE correlation analysis and projections onto a 2-dimensional plane

To get an impression of possible clustering effects in the latent space let us apply a t-SNE analysis. A non-standard parameter set for the sklearn-variant of t-SNE was chosen for the first analysis

tsne2 = TSNE(n_components, early_exaggeration=16, perplexity=10, n_iter=1000) 

The first plot shows the result for 20,000 randomly selected z-points corresponding to CelebA images

Also this plot indicates that the latent space is not populated with uniform density in all regions. Instead we see some fragmentation and clustering. But note that this might happened on different length scales. t-SNE arranges its projections such that correlations on different scales get clearly indicated. So the distances in this plot must not be confused with the real spatial distances in the original latent space. The axes of the t-SNE plot do not reflect any axes of the latent space and the plotted distribution is not the real data point distribution after a linear and orthogonal projection onto a plane. t-SNE works non-linearly.

However, the impression of clustering remains for a growing numbers of z-points. In contrast to the first plot the next plots for 80,000 and 165,000 z-points were calculated with standard t-SNE parameters.

We still see gaps everywhere between locally dense centers. At the center the size of the plotted points leads to overlapping. If one could zoom into some of the centers then gaps would again appear on smaller scales (see more plots below).

PCA analysis and t-SNE-plots of the z-point distribution in the (rotated) PCA coordinate system

The z-point distribution can be analyzed by a PCA algorithm. There is one dominant component and the importance smooths out to an almost constant value after the first 10 components.

This is consistent with the above findings. Most of the coordinates show rather similar Gaussian distributions and thus contribute in almost the same manner.

The PCA-analysis transforms our data to a rotated coordinate system with a its origin at a position such that the transformed z-point distribution gets centered around this new origin. The orthogonal axes of the new PCA-coordinates system show into the direction of the main components.

When the projection of all points onto planes formed by two selected PCA axes do not show a uniform distribution but a fragmented one, then we can safely assume that there really is some fragmentation going on.

t-SNE after PCA

Below you see t-SNE-plots for a growing number of leading PCA components up to 4. The filamental structure gets a bit smeared out, but it does not really disappear. Especially the elongated empty regions (voids) remain clearly visible.

t-SNE after PCA for the first 2 main components – 80,000 randomly selected z-points

t-SNE after PCA for the first 2 main components – 165,000 randomly selected z-points

t-SNE after PCA for the first 4 main PCA components – 165,000 randomly selected z-points

For 10 components t-SNE gets a presentation problem and the plots get closer to what we saw when we directly operated on the latent space.

But still the 10-dim space does not appear to be uniformly populated. Despite an expected smear out effect due to the non-linear projection the empty ares seem to be at least as many and as extended as the populated areas.

Direct view on the z-point distribution after PCA in the rotated and centered PCA coordinate system

t-SNE blows correlations up to make them clearly visible. Therefore, we should also answer the following question:

On what scales does the fragmentation really happen ?

For this purpose we can make a scatter plot of the projection of the z-points onto a plane formed by the leading two primary component axes. Let us start with an overview and relatively large limiting values along the two (PCA) axes:

Yeah, a PCA transformation obviously has centered the distribution. But now the latent space appears to be filled densely and uniformly around the new origin. Why?

Well, this is only a matter of the visualized length scales. Let us zoom in to a square of side-length 5 at the center:

Well, not so densely populated as we thought.

And yet a further zoom to smaller length scales:

And eventually a really small square around the origin of the PCA coordinate system:

z-point distribution at the center of a two-dim plane formed by the coordinate axes of the first 2 primary components
The chosen qsquare has its corners at (-0.25, -0.25), (-0.25, 0.25), (0.25, -0.25), (0.25, 0.25).

Obviously, not a dense and neither a uniform distribution! After a PCA transformation we see the still see how thinly the latent space is populated and that the “meaningful” z-points from the CelebA data lie along curved and narrow lines or curves with some point-like intersections. Between such lines we see extended voids.

Let us see what happens when we look at the 2-dim pane defined by the first and the 18th axes of the PCA coordinate system:

Or the distribution resulting for the plane formed by the 8th and the 35th PCA axis:

We could look at other flat planes, but we do not get rid of he line like structures around void like areas. This is really a strong indication of filamental structures.

Interpretation of the line patterns:
The interesting thing is that we get lines for z-point projections onto multiple planes. What does this tell us about the structure of the filaments? In principle we have the two possibilities already named above: 1) Thin multidimensional manifolds or 2) thin and basically one-dimensional manifolds. If you think a bit about it, you will see that projections of multidimensional manifolds would not give us lines or curves on all projection planes. However curved string- or tube-like manifolds do appear as lines or line segments after a projection onto almost all flat planes. The prerequisite is that the extension of the string in other directions than its main one must really be small. The filament has to have a small diameter in all but one directions.

So, if the filaments really are one-dimensional string-like objects: Should we not see something similar in the original z-space? Let us for example look at the plane formed by axis 52 and axis 221 in the original z-space (without PCA transformation). You remember that these were axes where the distribution got elongated and had centers at -2 and 5, respectively. And indeed:

Again we see lines and voids. And this strengthens our idea about filaments as more or less one-dimensional manifolds.

The “meaningful” z-points for our CelebA data obviously get positioned on long, very thin and basically one-dimensional filaments which surround voids. And the voids are relatively large regarding their area/volume. (Reminds me of the galaxy distribution in simulations of the development of the early universe, by the way.)

Therefore: Whenever you chose a randomly positioned z-point the chance that you end up in an unpopulated region of the z-space or in a void and not on a filament is extremely big.

Conclusion

We have used a whole set of methods to analyze the z-point distribution of an AE trained on CelebA images. We found the the z-point distribution is dominated by the number density variation along a few coordinate axes. Elongated shapes in certain directions of the latent space are very plausible on larger scales.

We found that the number density distributions along most of the coordinate axes have a thin Gaussian form with a peak at the origin and a half-with of 1. We have no real explanation for this finding. But it may be related to the fact the some dominant features of human faces show Gaussian distributions around a mean value. With Gaussians given we could however explain why the number density vs. radius showed a peak close to R=16.

A PCA analysis finds primary directions in the multidimensional space and transforms the z-point distribution into a corresponding one for orthogonal primary components axes. For logical reason we can safely assume that the corresponding projections of the z-point distribution on the new axes would still reveal existing thin filamental structures. Actually, we found lines surrounding voids independently onto which flat plane we projected the data. This finding indicates thin, elongated and curved but basically one-dimensional filaments (like curved strings or tubes). We could see the same pattern of line-like structure in projections onto flat coordinate planes in the original latent space. The volume of the void areas is obviously much bigger than the volume occupied by the filaments.

Non-linear t-SNE projections onto a 2-dim flat hyperplanes which in addition reproduce and normalize correlations on multiple scales should make things a bit fuzzier, but still show empty regions between denser areas. Our t-SNE projections all showed signs of complex correlation patterns of the z-points with a lot of empty space between curved structures.

The experiments all in all indicate that “meaningful” z-points of the training data, for which we get good reconstructions, lie within thin filaments on characteristic small length scales. The areas/volumes of the voids between the filaments instead are relatively big. This explains why chances that randomly chosen points in the z-space falls into a void are very high.

The results of the last post are consistent with the interpretation that z-points in the voids do not lead to reconstructions by the Decoder which exhibit standard objects of the training images. in the case of CelebA such z-points do not produce images with clear face or head like patterns. Face like features obviously correspond to very special correlations of z-point coordinates in the latent space. These correlations correspond to thin manifolds consuming only a tiny fraction of the z-space with a volume close zero.

 

KMeans as a classifier for the WIFI and MNIST datasets – V – cluster based classification of the MNIST dataset

In this series about KMeans

KMeans as a classifier for the WIFI and MNIST datasets – I – Cluster analysis of the WIFI example
KMeans as a classifier for the WIFI and MNIST datasets – II – PCA in combination with KMeans for the WIFI-example
KMeans as a classifier for the WIFI and MNIST datasets – III – KMeans as a classifier for the WIFI-example
KMeans as a classifier for the WIFI and MNIST datasets – IV – KMeans on PCA transformed data

we have so far studied the application of KMeans to the WIFI dataset of the UCI Irvine. We now apply the Kmeans clustering algorithm to the MNIST dataset – also in an extended form, namely as a classifier. The MNIST dataset – a collection of 28x28px images of handwritten numbers – has already been discussed in other sections of this blog and is well documented on the Internet. I, therefore, do not describe its basic properties in this post. A typical image of the collection is

Load MNIST – dimensionality of the feature space and scaling of the data

Due to the ease of use, I loaded the MNIST data samples via TF2 and the included Keras interface. Otherwise TF2 was not used for the following experiments. Instead the clustering algorithms were taken from “sklearn”.

Each MNIST image can be transformed into a one-dimensional array with dimension 784 (= 28 * 28). This means the MNIST feature space has a dimension of 784 – which is much more than the seven dimensions we dealt with when analyzing the WIFI data in the last post. All MNIST samples were shuffled for individual runs.

Scaling of MNIST data for clustering?

A good question is whether we should scale or normalize the sample data for clustering – and if so by what formula. I could not answer this question directly; instead I tested multiple methods. Previous experience with PCA and MNIST indicated that Sklearn’s “Normalizer” would be helpful, but I did not take this as granted.

A simple scaling method is to just divide the pixel values by 255. This brings all 784 data array elements of each image into the value range [0,1]. Note that this scaling does not change relative length differences of the sample vectors in the feature space. Neither does it shift or change the width of the data distribution around its mean value. Other methods would be to standardize the data or to normalize them, e.g. by using respective algorithms from Scikit-Learn. Using either method in combination with a cluster analysis corresponds to a theory about the cluster distribution in the feature space. Normalization would mean that we assume that the clusters do not so much depend on the vector length in the feature space but mainly on the angle of the sample vectors. We shall later see what kind of scaling helps when we classify the MNIST data based on clusters.

In a first approach we leave the data as they are, i.e. unscaled.

Parameters for clustering

All the following cluster calculations were done on 3 out of 8 available (hyperthreaded) CPU cores. For Kmeans and MiniBatchKMeans we used

n_init       = 100       # number of initial cluster configurations to test 
max_iter     = 100       # maximum number of iterations  
tol          = 1.e-4     # final deviation of subsequent results (= stop condition)  
random_state = 2         # a random state nmber for repeatable runs
mb_size      = 200       # size of minibatches (for MiniBatchKMeans) 

The number of clusters “num_clus” was defined individually for each run.

Analysis by KMeans? Too expensive …

A naive approach to perform an elbow analysis, as we did for the WIFI-data, would be to apply KMeans of Sklearn directly to the MNIST data. But a test run on the CPU shows that such an endeavor would cost too much time. With 3 CPU cores and only a very limited number of clusters and iterations

n_init   = 10      # only a few initial configurations
max_iter = 50 
tol      = 1.e-3  
num_clus = 25      # only a few clusters

a KMeans fit() run applied to 60,000 training samples [len(X_train) => 60,000]

kmeans.fit(X_train)

requires around 42 secs. For 200 clusters the cluster analysis requires around 214 secs. Doing an elbow analysis would therefore require many hours of computational time.
To overcome this problem I had to use MiniBatchKMeans. It is by factors > 80 faster.

Elbow analysis with the help of MiniBatchKmeans

When we use the following setting for MiniBatchKMeans

n_init = 50 # only a few initial configurations
max_iter = 100
tol = 1.e-4
mb_size = 200 

I could perform an elbow analysis for all cluster-numbers 1 < k <= 250 in less than 20 minutes. The following graphics shows the resulting intertia curve vs. cluster number:

The “elbow” is not very pronounced. But I would say that by using a cluster number around 200 we are on the safe side. By the way: The shape of the curve does not change very much when we apply Sklearn’s Normalizer to the MNIST data ahead of the cluster analysis.

Classifying unscaled data with the help of clusters

We now perform a prediction of our adapted cluster algorithm regarding the cluster membership for the training data and for k=225 clusters:

n_clu    = 225
mb_size  = 200
max_iter = 120
n_init   = 100
tol      = 1.e-4

Based on the resulting data we afterward apply the same type of algorithm which we used for the WIFI data to construct a “classifier” based on clusters and a respective predictor function (see the last post of this series).

The data distribution for the 10 different digits of the training set was:

class 0 :  5905
class 1 :  6721
class 2 :  6031
class 3 :  6082
class 4 :  5845
class 5 :  5412
class 6 :  5917
class 7 :  6266
class 8 :  5860
class 9 :  5961

How good is the cluster membership of a sample for a digit class defined?
Well, out of 225 clusters there were only around 15 for which I got an “error” above 40%, i.e. for which the relative fraction of data samples deviating from the dominant class of the cluster was above 40%. For the vast majority of clusters, however, samples of one specific digit class dominated the clusters members by more than 90%.

The resulting confusion matrix of our new “cluster classifier” for the (unscaled) MNIST data looks like

[[5695    4   37   21    7   57   51   15   15    3]
 [   0 6609   33   21   11    2   15   17    2   11]
 [  62   45 5523  120   14   10   27  107  116    7]
 [  11   43  114 5362   15  153    8   60  267   49]
 [   5   60   62    2 4752    3   59   63    5  834]
 [  54   18  103  777   25 4158  126    9  110   32]
 [  49   20   56    4    6   38 5736    0    8    0]
 [   5   57   96    2   86    1    0 5774    7  238]
 [  30   76  109  416   51  152   39   35 4864   88]
 [  25   20   37   84  706   14    6  381   46 4642]]

This confusion matrix comes at no surprise: The digits “4”, “5”, “8”, “9” are somewhat error prone. Actually, everybody familiar with MNIST images knows that sometimes “4”s and “9”s can be mixed up even by the human eye. The same is true for handwritten “5”s, “8”s and “3”s.

Another representation of the confusion matrix is:

The calculation for the matrix elements was done in a standard way – the sum over percentages in a row gives 100% (the slight deviation in the matrix is due to rounding). I.e. we look at erors of the type TN (True Negatives).

The confusion matrix for the remaining 10,000 test data samples is:

The relative errors we get for our classifier when applied to the train and test data is

rel_err_train = 0.115 ,
rel_err_test = 0.112

All for unscaled MNIST data. Taking into account the crudeness of the whole approach this is a rather convincing result. It proves that it is worth the effort to perform a cluster analysis on high dimensional data:

  • It provides a first impression whether the data are structured in the feature space such that we can find relatively good separable clusters with dominant members belonging to just one class.
  • It also shows that a cluster based classification for many datasets cannot reach accuracy levels of CNNs, but that it may still deliver good results. Without any supervised training …

The second point also proves that the distance of the data points to the various cluster centers contains valuable information about the class membership. So, a MLP or CNN based classification could be performed on transformed MNIST data, namely distance vectors of sample datapoints to the different cluster centers. This corresponds to a dimension reduction of the classification problem. Actually, in a different part of this blog, I have already shown that such an approach delivers accuracy values beyond 98%.

For MNIST we can say that the samples define a relatively well separable cluster structure in the feature space. The granularity required to resolve classes sufficiently well means a clsuter number of around 200 < k < 250. Then we get an accuracy close to 90% for cluster based classification.

t-SNE representation of the MNIST data

Can we somehow confirm this finding about a good cluster-class-relation independently? Well, in a limited way. The t-SNE algorithm, which can be used to “project” multidimensional data onto a 2-dimensional plane, respects the vicinity of vectors in the original feature space whilst deriving a 2-dim representation. So, a rather well structured t-SNE diagram is an indication of clustering in the feature space. And indeed for 10,000 randomly selected samples of the (shufffled) training data we get:

The colorization was done by classes, i.e. digits. We see a relatively good separation of major “clusters” with data points belonging to a specific class. But we also can identify multiple problem zones, where data points belonging to different classes are intermixed. This explains the confusion matrix. It also explains why we need so many fine-grained clusters to get a reasonable resolution regarding a reliable class-cluster-relation.

Classifying scaled and normalized MNIST data with the help of clusters

Can we improve the accuracy of our cluster based classification a bit? This would, e.g., require some transformation which leads to a better cluster separation. To see the effect of two different scalers I tried the “Normalizer” and then also the “StandardScaler” of Sklearn. Actually, they work in opposite direction regarding accuracy:

The “Normalizer” improves accuracy by more than 1.5%, while the “Standardizer” reduces it by almost the same amount.

I only discuss results for “Normalization” below. The confusion matrix for the training data becomes:

and for the test data:

The relative error for the test data is

Error for trainings data:
avg_err_train = 0.085 :: num_err_train = 5113
 
Error for test data:
avg_err_test = 0.083 :: num_err_test = 832

So, the relative accuracy is now around 91.5%.
The result depends a bit on the composition of the training and the test dataset after an initial shuffling. But the value remains consistently above 90%.

Data compression by Autoencoders and clustering

Just for interest I also had a look at a very different approach to invoke clustering:

I first applied a simple CNN-based AutoEncoder [AE] to compress the MNIST data into a 25-dimensional space and applied our clustering methods afterwards.

I shall not discuss the technology of autoenconders in this post. The only relevant point in our context is that an autoencoder provides an efficient non-linear way of data compression and dimensionality reduction. Among many other useful properties and abilities … . Note: I did not use a “Variational Autoencoder” which would have allowed for even better results. The loss function for the AE was a simple quadratic loss. The autoencoder was trained on 50,000 training samples and for 40 epochs.

A t-SNE based plot of the “clusters” for test data in the 25-dimensional space looks like:

We see that the separation of the data belonging to different classes is somewhat better than before. Therefore, we expect a slightly better classification based on clusters, too. Without any scaling we get the following confusion data:

[[5817    7   10    3    1   14   15    2   27    1]
 [   3 6726   29    2    0    1   10    5   12   10]
 [  49   35 5704   35   14    4   10   61   87    7]
 [   8   78   48 5580   22  148    2   40  111   29]
 [  47   27   18    0 4967    0   44   38    3  673]
 [  32   20   10  150    8 5039   73    4   43   28]
 [  31   11   23    2    2   47 5746    0   15    1]
 [   6   35   35    6   32    0    1 5977    7  163]
 [  17   67   22   86   16  217   24   22 5365   52]
 [  35   32   11   92  184   15    1  172   33 5406]]

Error averaged over (all) clusters :  6.74

The resulting relative error for the test data was:

avg_err_test = 0.0574 :: num_err_test = 574

With Normalization:

Error for test data:
avg_err_test = 0.054 :: num_err_test = 832

So, after performing the autoencoder training on normalized data we consistently get

an accuracy of around 94%.

This is not too much of a gain. But remember:
We performed a cluster analysis on a feature space with only 25 dimensions – which of course is much cheaper. However, we paid a prize, namely the Autoencoder training which lasted about 150 secs on my old Nvidia 960 GTX.

And note: Even with only 100 clusters we get above 92% on the AE-compressed data.

Conclusion

We have shown that using a non-supervised cluster analysis of the MNIST data with around 225 clusters allows for classifying images with an accuracy around 90.5%. In combination with an Autoencoder compression we even reaches values around 94%. This is comparable with other non-optimized standard algorithms aside of neural networks.

This means that the MNIST data samples are organized in a well separable cluster structure in their feature space. A test run with normalized data showed that the clusters (and their centers) differ mostly by their direction relative to the origin of the feature space and not so much by their distance from the origin. With a relatively fine grained resolution we could establish a simple cluster-class-relation which allowed for cluster based classification.

The accuracy is, of course, below the values reachable with optimized MLPS (98%) and CNNs (above 99%). But, clustering is a fast, reliable and non-supervised method. In addition in combination with t-SNE we can create plots which can easily be understood by the customers. So, even for more complex data I would always recommend to try a cluster based classification approach if you need to provide plots and quick results. Sometimes the accuracy may even be sufficient for your customer’s purposes.

KMeans as a classifier for the WIFI and MNIST datasets – IV – KMeans on PCA transformed data

In the last posts of this series

KMeans as a classifier for the WIFI and MNIST datasets – I – Cluster analysis of the WIFI example
KMeans as a classifier for the WIFI and MNIST datasets – II – PCA in combination with KMeans for the WIFI-example
KMeans as a classifier for the WIFI and MNIST datasets – III – KMeans as a classifier for the WIFI-example

we applied the KMeans algorithm to perform a cluster analysis of the WIFI dataset of the UCI Irvine. The results gave us insights into the spatial grouping and the separability of the data samples in their 7-dimensional feature space. An additional PCA analysis helped to understand why projections of the data into some selected 2-dimensional sub-spaces of the feature space revealed the four or five dominant clusters very well. In the third post I discussed a simple method to transform KMeans into a classifier. In the WIFI case a set of 9 to 11 clusters provided a good resolution of the data distribution and we reached a convincing classifier accuracy.

What we have not done, yet, is to transform and project the WIFI data into the coordinate system of the most important main components and afterward apply clustering by the help of KMeans. We know already that three primary components fit the data very well and give us around 90% of the “explained variance“. See the second post for these basic PCA results. We, therefore, expect comparably accurate prediction results of a cluster classifier for the PCA transformed data as the accuracy values given in the last post. For 500 test samples after a KMeans fit of 1500 training samples in the original feature space we found a prediction accuracy of around 98%.

In this post we first perform a PCA analysis for three primary components of the WIFI data distribution and then transform the vectors of 1500 randomly selected training samples to the 3-dimensional main component space. Then we apply KMeans onto the data in the reduced vector space and establish a classifier predictor based on the methods described in the last article. Eventually, we check the accuracy and display the resulting confusion matrix for the 500 test samples.

As a side-step for readers who look for real world use cases regarding signals I want to mention an article in “Nature”, which I found today via a newspaper podcast. There neural firing rates of a brain region, i.e. some very special signals, were used to enable an ALS patient to select letters from presented sequences and form statements – by his “thoughts”. This looks like an environment where Machine Learning really could contribute more in the future.

KMeans as a classifier on the PCA transformed WIFI data

Below I give you the results for the WIFI data transformed and projected to the most important three primary components and 11 clusters:

Results for 1500 training samples

  
Confusion matrix for training data - 11 clusters, 3 PCA components 
A confusion matrix for the classes according to the clustering
[[374   0   1   0]
 [  0 362  13   0]
 [  4   7 359   5]
 [  1   0   0 374]]

Number of wrongly predicted train samples:  31  :: avg_err =  0.020

So, just from counting wrongly classified examples the average error is measured to be around 2% and the relative accuracy is something like 98%.

And for the test data I got:

Number of wrongly predicted test samples:  6  :: avg_err =  0.012

This gives us the following confusion matrix:

This actually proves that our assumption about combining a PCA transformation with a KMeans classifier was correct. The reduction of the dimensionality of the problem did not affect the prediction accuracy very much.

Just for completeness the data for only 2 primary components:

The accuracy of around 97% is still convincing. The reason is that the two most important primary components already deliver around 85% of the “explained variance”.

Why is the Wifi-example not so boring as one may think?

A reader wrote me that he finds the WIFI example too simple and boring. OK, but … The principles and methods remain the same when more complex data are analyzed for clusters. Especially in the case of binary classification. But are there interesting real world use cases for other types of signals? Oh, yes. I just want to refer to an interesting example which I read about this morning.

The WIFI example works with samples which describe 7 signals. Now, imagine that such signals come from a sensor implant measuring electric potentials of a human brain and that we do not analyze for the location of rooms but for the selection of letters by “Yes/No” decision-“imaginations” – made by a human who was trained via frequency based audio-feedback for the brain regions covered by the implants. Science fiction? No, reality. And of huge help for ALS patients. See

Chaudhary, U., Vlachos, I., Zimmermann, J.B. et al. Spelling interface using intracortical signals in a completely locked-in patient enabled via auditory neurofeedback training. Nat Commun 13, 1236 (2022). https://doi.org/10.1038/s41467-022-28859-8

and
https://www.nature.com/articles/s41467-022-28859-8

There, signals were measured from two implant arrays with 64 electrodes. OK, these are somewhat more signals than just 7. But if I understood the text correctly not all channels were used or useful. Just a few. Reminds us of PCA? In addition the time structure of the signal (firing rates) are important – but these are just different signal characteristics. And we have different labels. But, at least in principle, we speak of nothing else than pattern detection based on signal values.

I only had a brief look into the supplementary data of the experiment (an Excel file) and I am not at all familiar with the the experimental setup – but from reading my impression was that just threshold values for the firing rate of some channels were used to distinguish “Yes” from “No”. Maybe we could do a bit better with AI (PCA and classifying according to multidimensional pattern analysis)? Does this look like an interesting use case?

Conclusion

In the case of the WIFI example KMeans can be used as an efficient classifier for samples in a feature space which describes characteristics of multiple signal sources. We have seen that the basic concept also works when we apply KMeans after a PCA based transformation to the most important primary components.

The question is: Does this work equally well for other data sets? The answer depends upon the accuracy by which clusters reside completely within regions of the feature space filled by samples of a specific label.
A data set whose samples show grouping in a multidimensional feature space and appear relatively well separable by their labels is the MNIST data set. In the next post of this series we shall therefore try and apply a clustering algorithm to the MNIST data ensemble.

Stay tuned …

Ceterum censeo: The worst fascist today who must be isolated and denazified is the Putler.