Upgrade of a mail server to Leap 15.1 – problems with SSSD and clamd

I use email servers based on Postfix (smtp), Cyrus (imap) in combination with an LDAP server for authentication purposes and fetchmail to access external mail provider services. Both the mail servers and the LDAP server are virtualized guests on KVM host servers with LUKS-encrypted disks/partitions. Due to a series of security measures to become compliant to DSGVO and EU-GDPR based customer contracts the whole setup is relatively complicated. However, authentication for mail clients to the different servers is of central importance. Communication of each mail server to the LDAP server is performed via an TLS connection and SSSD. The mail client systems access the mail servers via TLS; login to the client systems partially also depends on LDAP.

Whenever a full upgrade of the server is required I, therefore, first test it on copies of the KVM host installation and each KVM instance. (The “dd” command is of good service during these tests.) One experiences some unwelcome surprises from time to time – and then you may need a quick restauration of a workings system.

When I switched everything to Opensuse Leap 15.1 some days ago I stumbled once again across small problems. It is interesting that one of the problems had to do with SSSD – again.

Previous problems with SSSD during upgrades to Opensuse Leap 15.0

Some time ago 1 described a problem with PAM control files for imap and smtp services on the mail server when I upgraded to Leap 15.0. See:
Mail-server-upgrade to Opensuse Leap 15 – and some hours with authentication trouble
The PAM files included directives for SSSD. The file were unfortunately replaced (without backups) during upgrade from OS 42.3 to Leap 15.0. This hampered all authentication of mail clients via authentication requests from the imap and smtp services to the LDAP system. The cause of the resulting problems at the side of the email clients, namely authetication trouble, was not easy to identify.

New SSSD problem during upgrades to Opensuse Leap 15.1

This time I ran once again into authentication trouble – and suspected some mess with the PAM files again. Yet, this was not the case – the PAM files were all intact and correct. (SuSE learns!) However, after an hour of testing I saw that the SSSD service did not what it should. Checking the status of the service with “systemctl status sssd.service” I got a final status line saying “Backend is offline”.

What did this mean? I had no real clue. You naturally assume that LDAP would be my backend in my server configuration; this is reflected in the file /etc/sssd/sssd.conf:

config_file_version = 2
services = nss,pam
domains = default
filter_groups = root
filter_users = root
ldap_uri = ldap://myldap.mydomain.de
ldap_search_base = dc=mydc,dc=de
ldap_schema = rfc2307bis
id_provider = ldap
ldap_user_uuid = entryuuid
ldap_group_uuid = entryuuid
ldap_id_use_start_tls = True
enumerate = True
cache_credentials = False
ldap_tls_cacertdir = /etc/ssl/certs
ldap_tls_cacert = /etc/ssl/certs/mydomainCA.pem
chpass_provider = ldap
auth_provider = ldap

I checked – the LDAP service was active in its KVM machine. Of course, NSS must also be working for SSSD to become functional. No problem there. I checked whether the LDAP service could be reached through the firewalls of the different KVM instances and their hosts. Yes, this worked, too. So, what the hack was wrong?

Eventually, I found some interesting contribution in a Fedora mailing list: See here. What if the problem had its origin really in some systemd glitch? Wouldn’t be the first time.

So, I first made a copy of the original file “/usr/lib/systemd/system/sssd.service” and after that tried a modification of the original file linked by “sss.service” in “/etc/systemd/system/multi-user.target.wants”. I simply added a line “After=network.service” to guarantee a full network setup before sssd was started.

Description=System Security Services Daemon
# SSSD must be running before we permit user sessions
Before=systemd-user-sessions.service nss-user-lookup.target

ExecStart=/usr/sbin/sssd -i ${DEBUG_LOGGER}


And guess what? This was successful! The reason being that at the point in time when the sssd.service starts name resolution (i.e. the evaluation of resolv.conf and access to DNS-servers ) may not yet be guaranteed!


Note that there may be multiple reasons for such a delay; one you could think of is a firewall which is started at some point and requires time to establish all rules. Your server may not get access to any of the defined DNS-servers up to the point where the firewalls rules are working. Then, depending on when exactly you start your firewall service, you may have to use a different “After”-rule than mine.

Important point:
You should not permanently change the files in “/usr/lib/systemd”. So, after such a test as described you should restore the original systemd file for a specific service in “/usr/lib/systemd/system/” with all its attributes! The correct mechanism to add modifications to systemd service configuration files is e.g. described here “askubuntu.com : how-do-i-override-or-configure-systemd-services“.

So, in my case we need to execute “systemctl edit sssd” on the command line and then (in the editor window) add the lines


This leads to the creation of a directory “/etc/systemd/system/sssd.service” with a file “override.conf” which contains the required entries for service startup modification.

An additional problem with clamd – timeout during the start of the clamd service

One of my anti-virus engines integrated with amavis is clamav. More precisely the daemon based variant, i.e. the “clamd” service. However, when I tested amavis for mail scanning I saw that it used to job instances of “clamscan” instead of “clamdscan”. The impact of Amavis’ using two parallel clamscan threads was an almost 100% CPU utilization for some time.

It took me a while to find out what the cause of this problem was: clamd requires time to start up. And due to whatever reasons this time is now a bit bigger on my mail system than the standard timeout of 90 secs systemd provides. This can be compensated by “systemctl edit sssd” and adding lines as


After this change clamd ran again as usual. Note however that clamav does not provide sufficient protection on professional mail servers, especially when your email clients are based on a Windows installations. Then you need at least one more advanced (and probably costly) antivirus solution.


fedora archive contribution
www.clearos.com community : clamd-start-up-times-out
unix.stackexchange.com : how-to-change-systemd-service-timeout-value

A remarkable experience with a HTTP Error 406 and some security measures of a web-hosting-provider

It is very seldom that you are confronted with a HTTP status message of type 406 “Not acceptable”. However, this happened yesterday to a customer who uses a renowned hosting provider (in Norway) to publish his web-sites. The customer uses his own WordPress installation on hosted web-servers. His favorite browser is Firefox on a Win 10 desktop system. A week ago he could work without any restrictions. Then suddenly everything changed.

Access to website and WP admin interface broken due to security measures of the provider

At some point in time during last week the hosting-provider changed his security policies on his (Norwegian) Apache servers. The provider seems to have at least changed settings of the “mod_security” module – and thereby started to eliminate old browsers by some rules. (Maybe they even introduced the use of the mod_security module for the first time ?). To implement mod-security with a reasonable set of rules basically is a good measure.

However, the effect was that our customer got a 406 error whenever he tried to access his web-site with his Firefox browser. The “406 Not Acceptable” message indicates that a web server cannot or will not (due to some rules) satisfy some conditions in the HTTP GET- or POST-request. Our customer uses the latest version of Firefox. He tested whether he got something similar on a test installation of one of our hosted servers in Germany. Of course not.

A subsequent complaint of our customer was answered by his provider; the answer in a direct translation says:

Contact the Firefox technicians or use Chrome!

Very funny! Our customer asked us for help. We tested the web-servers response with multiple browsers from Linux and Windows desktops. The problem seemed to exist only for Firefox and only on desktop systems. This already indicated a strange server reaction to the HTTP “User-Agent” string.

But this was only part of the strange experience our customer got due to new security measures. In addition his provider enforced the usage of an Apache htaccess password (Basic HTTP user authentication) for all users who maintained their own WordPress installation on the hoster’s web-servers. Our customer suddenly needed to provide a UserId and a password to get access to his WordPress installation’s “wp-admin”-directory. We found out about this intentionally imposed restriction by having a look at the public web site of the provider. There, in a side column, we found a message regarding the new restriction. Customers were asked there to contact the hoster’s specialists for required credentials. Our customer had not been directly informed by the provider about this new policy. So, we just sent the provider a mail and asked him to give us the authentication data to the admin folder of our customer’s WP-installation. We got it one day later via email.

In my opinion these procedures indicate some mess we are facing with improperly handled IT-security activities these days.

Some comments regarding enforced HTTP Basic Authentication for WP’s admin directory

Comment 1: It is, of course, OK to enforce a HTTP password access to directories of a web server. But this is only an effective protection measure if the provider at the same time enforces general TLS/SSL encryption for the access to the hosted web-sites. Otherwise the password would be sent in clear text over the Internet. However, you can still work with a WordPress installation or other CMS-installations on the provider’s web-servers without any SSL certificate. Our customer has a SSL-certificate – but he had to pay for it. Here business interests of the provider obviously collide with real security procedures.

Comment 2: Personally, I regard it as a major mistake to set a common UserID and a fixed permanent password for customers and send
these credentials to a web-admin via an unencrypted email. Ironically enough the provider asked the receiver in the mail to take note of the password and then to destroy the mail. So, mails on the customers mail system are dangerous, but the transfer of an unencrypted mail over at least partially unencrypted Internet lines is not?

Hey, we are not talking about a one time password here – but permanent credentials set and enforced by the provider. The CPanel admin tool offered by the hosting provider does NOT allow for the change of the fixed htaccess password set by the provider’s admins.

Furthermore, why announce this policy on a public website and not inform the customers via a secure channel? Next question: How did they know that we were authorized to request the access data without contacting our customer first ???

The mess with the User-Agent string

Also interesting was the analysis of the Firefox problem. We can demonstrate the effect on the provider’s own website. Here is what you presently (18.10.2019) get when opening the homepage of the provider with Firefox from a Linux desktop:

And here is what you get when you manipulate the User-Agent string a bit:

The blue rectangles have been added not to directly show the provider’s name. Note the 406 error message in the FF developer tool at the bottom!

Well, well … Our customer got the following when opening his own web-page:

Some analysis showed that we get a correct display of the web-site on the same browser if we manipulated the HTTP User-Agent-string for Firefox a bit. One way to do this is offered by the web developer tools of Firefox. However, there are also good plugins to fake the User-Agent string.

The next question was: What part in the User-Agent-string reacted the provider’s Apache servers allergic to?

The standard User-Agent-string of Firefox in a HTTP-GET- or POST-request is defined to have the following structure:

Mozilla/5.0 (platform; rv:geckoversion) Gecko/geckotrail Firefox/firefoxversion

This can be learned from related explanations of mozilla.org:
Firefox User Agent string

“geckotrail” can be an indication of a version or a date. However – quotation:

On Desktop, geckotrail is the fixed string “20100101”

And when we check the User-Agent-string for Firefox on e.g. a Linux desktop we indeed get:

Mozilla/5.0 (X11; Linux x86_64; rv:68.0) Gecko Firefox/68.0


Posted in Security und Security-Tools, Web - Browser, HTTP, HTML, CSS | Tagged , , , , ,