Upgrade Laptop to Opensuse 42.3, Probleme mit Bumblebee und VMware WS 12.5, Workarounds

Gestern war ein Upgrade meines nun schon in die Jahre gekommenen Laptops von Opensuse Leap 42.2 auf Leap 42.3 fälllig.
Ich bin dabei gem. der schönen Anleitung in
https://kamarada.github.io/en/2017/08/03/how-to-upgrade-from-opensuse-leap-422-to-423/
vorgegangen. Zu der Anleitung gibt es nichts weiter zu sagen; die ist perfekt. Im Upgrade hatte ich nur die Standardrepositories (inkl. Update-Repository) für Leap 42.3 benutzt.

Mein Laptop hat eine Nvidia-Karte (Optimus-System). Das ursprüngliche Leap 42.2 lief auf dem Laptop deshalb mit einer Bumblebee-Installation; das funktionierte einwandfrei. Zudem nutzte ich auf dem Laptop VMware WS 12.5. Nach dem Leap-Upgrade hatte ich jedoch sowohl mit Bumblebee als auch VMware-Workstation Probleme - obwohl auch Leap 42.3 nur einen Kernel der nun doch schon recht alten Version 4.4 aufweist! nach dem Ugrade war bei mir 4.4.92-31 aktiv; bei der Leap_42.3 war dagegen der Kernel 4.4.76 der Default-Kernel.

Nebenbei: Bzgl. der Kernelversionen hat der SLES-Unterbau von Opensuse Leap plötzlich den unangenehmen Nebeneffekt, dass man an älteren Kernelversionen kleben bleibt ... Von SUSEs Seite müssen ggf. Back-Portierungen aus neuen Kernelversionen zu älteren Versionen vorgenommen werden. Das kann Nebeneffekte zeitigen (s.u.). Bin mal gespannt wie Opensuse mit diesem Thema in Zukunft umgehen will ...

Wiederholte Modul-Einträge in der Datei "/etc/sysconfig/kernel"

Das erste Problem war, dass die Datei "/etc/sysconfig/kernel" nach dem Neustart mehrfache Einträge zum Laden von nvidia-Modulen enthielt. Woher immer das stammte; vielleicht hatte ich das ja schon früher von Experimenten mit Bumblebee drin. Vielleicht wurden die Einträge aber auch im Upgrade hinzugefügt. Jedenfalls mal checken, dass in dieser Datei nach dem Upgrade kein überflüssiger Unsinn drinsteht.

Bumblebee-Installation wieder zum Laufen bringen

Bumblebee lief nach dem Upgrade nicht mehr. Ok, dachte ich, also die für Leap 42.3 passenden Repositories aktivieren und diverse Bumblebee-Pakete aktualisieren. Es gibt jedoch mehrere Repositories mit Bumblebee-Paketen für Opensuse Leap, u.a.
http://download.opensuse.org/repositories/home:/Bumblebee-Project:/nvidia:/3xx.xx/OpenSUSE_Leap_42.3.
Unter Leap 42.1/42.2 hatte ich etliche Pakete aus diesen Repositories benutzt.

Für Leap 42.3 gilt (nach meiner Erfahrung): Zu nutzen ist
http://download.opensuse.org/repositories/X11:/Bumblebee/openSUSE_Leap_42.3
und sonst gar nichts! Auch nicht das Nvidia-Community-Repository!

Die im "X11:Bumblebee"-Repository vorhandenen Pakete - inklusive der Pakete mit dem proprietären Nvidia-Treiber - kann und sollte man dagegen (bis auf eines) installieren; das Paket "primus" habe ich mir allerdings aus dem 42.3-Update-Repository geholt.

Ergänzung 02.12.2017: Wichtige Ausnahme:
bbswitch sollte man nicht installieren. Es reicht bbswitch-kmp-default! Und nur letzteres hat bei mir funktioniert - und zwar ohne dkms-Service.

Die Installation von bbswitch aktiviert den "dkms"-Service; waren sowohl "bbswitch-kmp-default" und "bbswitch" installiert, so führte dies bei mir anhand von Statusanzeigen erkennbar zu einem wechselseitigen An- und Abschalten der Graka im Bootprozess; sie wird danach von den Treibern nicht mehr erkannt.

(Auf die anderen Repositories zu unterschiedlichen Nvidia-Treibern sollte man wirklich nur im Notfall zurückgreifen, und zwar dann, wenn ihr für eure Graka zwingend einen älteren Nvidia-Treiber benötigt; aber auch dann nur x11-video-nvidia installieren. Nicht dagegen das Paket "dkms-nvidia"!)

Zu beachten ist also auch folgender Hinweis: Falls ihr früher einen laufenden dkms-Service hattet: Unbedingt deaktivieren! Und zwar nach der Installation der Pakete, aber schon vor einem anschließenden Neustart des Systems.

systemctl disable dkms

Das steht im Gegensatz zu den Anweisungen in der Anleitung
https://de.opensuse.org/SDB:NVIDIA_Bumblebee
absolut notwendig! Zumindest auf meinem Laptop ... Fragt mich bitte nicht, warum der dkms-Service zu Problemen führt.

Der Bumblebee-Dämon "bumblebeed" dagegen muss über den zuständigen Service aktiviert werden

systemctl enable bumblebeed

Zudem checken, dass der User, unter dem ihr mit einer grafischen Oberfläche arbeitet, Mitglied der Gruppen "video" und "bumblebee" ist. Ggf. mittels "usermod -G video,bumblebee USERNAME" korrigieren.

Dann Neustart des Systems. Die Kommandos

optirun glxspheres
vblank_mode=0 primusrun glxspheres
optirun -b none nvidia-settings -c :8

sollten danach alle einwandfrei funktionieren.

Sollte das nicht der Fall sein und immer noch eine Meldung kommen, dass die Graka nicht vorhanden sei und der "nvidia"-Treiber nicht geladen werden könne:

Alle Pakete aus dem Nvidia-(Community)-Repository (Treiber nvidia-gfx-GL04 und ähnliche), aus dem Nvidia-Bumblebee-Repository und dem oben angegebenen Standard-Bumblebee-Repository löschen. Danach nur die Pakete aus dem oben angegebenen Standard-Repository http://download.opensuse.org/repositories/X11:/Bumblebee/openSUSE_Leap_42.3
mit Ausnahme von bbswitch (!) installieren. Den dkms-Service dann prophylaktisch deaktivieren! Neustart.

Ein probeweiser Start des dkms-Service führt nach einem vorhergehenden Erfolg mit "primusrun" in jedem Fall wieder in die Katastrophe:

Danach kommen in Logfiles Fehlermeldungen, dass es kein passendes Grafik Device gäbe. Am Terminal erscheint: "Cannot access secondary GPU ...". Das ließ sich durch ein anschließendes normales Stoppen des dkms-Service nicht mehr beheben. Bumblebee funktionierte auch nach dem Stoppen des dkms-Service nicht mehr ordnungsgemäß; nvidia Module ließen sich selbst manuell nicht mehr laden. Da half nur ein Reboot - natürlich bei deaktiviertem dkms-Service.

Ich habe leider keine Zeit, der genauen Ursache auf den Grund zu gehen. Bei künftigen Änderungen des Kernels muss man ohne korrekt funktionierendes dkms ggf. halt ein Update für die nvidia- und bbswitch-Module aus dem Bumblebee-Repository erzwingen und damit (zumindest bzgl. nvidia) eine Neukompilation durchführen lassen. Interessant ist, dass für den bei mir nach dem Leap-Upgrade aktiven Kernel 4.4.92-31 ein Link von
/lib/modules/4.4.92-31-default/weak-updates/updatesbbswitch.ko -> /lib/modules/4.4.676-1-default/updates/bbswitch.ko
angelegt wurde. Der funktioniert offenbar. Irgendwas am Kernel 4.4.92 missfällt womöglich dkms beim Versuch, für den neueren Kernel das passende Modul zu definieren. Der 4.4.92-Kernel führt aufgrund von Rückportierungen, die die SuSE-Leute wohl vorgenommen haben, auch noch in anderem Kontext - nämlich bzgl. der VMware WS - zu Schwierigkeiten.

Probleme mit der VMware Workstation 12.5. unter Leap 42.3 beheben

Meine unter Leap 42.2 installierte VM WS 12.5.1 lief nach dem Leap-Upgrade nicht mehr. Auch ein Upgrade der Workstation-SW auf die aktuelle Version 12.5.8 endete beim ersten Startversuch mit Kompilierungsfehlern. Die konnte ich mir im Detail zwar ansehen; wie man aber die problematischen Stellen im Quellcode der VMware-Module beheben hätte müssen, lag jenseits meiner Kenntnisse und Fähigkeiten.

Hier half aber der Beitrag eines offenbar Kernel-Kundigen im VMware Community Forum:
https://communities.vmware.com/message/2693257#2693257
Dort suche man nach dem Beitrag von "hendrikw84"! Herzlichen Dank an diesen Herrn! Seine Vorgaben zur Korrektur diverser Codezeilen funktionieren nämlich einwandfrei. (Ursache der Probleme sind offenbar Rückwärtsportierungen von Features des Kernels 4.10 in den Code des Kernels 4.4. Was immer die SuSE-Leute dabei gedacht haben ...)

[ Warum allerdings die eine vorgeschlagene Korrektur-Zeile

retval = retval = get_user_pages((unsigned long)uvAddr, numPages, 0, ppages, NULL);

nicht gleich zu

retval = get_user_pages((unsigned long)uvAddr, numPages, 0, ppages, NULL);

verkürzt werden kann, ist mir etwas schleierhaft. Typo? Die letzte Zeile für retval klappt für den Code von hostif.c unter vmmon-only/linux nämlich auch.]

Nach Durchführung der Korrekturen ließen sich die VMware-Codes jedenfalls anstandslos für Kernel "4.4.9-31-default" kompilieren - und die nötigen Kernelmodule wurden fehlerfrei erzeugt. Meine zwei lokalen (non shared) virtuellen Maschinen für Windows-Installationen liefen damit bislang einwandfrei.

Ob es - wie in der Diskussion im VMware Community Forum angedeutet, Probleme mit "shared VMs" auf Servern gibt, habe ich nicht getestet. Auf Servern verwende ich KVM-Installaionen mit spice oder X2GO.

Viel Spaß denn mit Opensuse 42.3 auf dem Laptop!

Fun with veth-devices, Linux bridges and VLANs in unnamed Linux network namespaces – VI

I continue my excursion into virtual networking based on network namespaces, veth devices, Linux bridges and virtual VLANs.

  1. Fun with veth-devices, Linux bridges and VLANs in unnamed Linux network namespaces – I
    [Commands to create and enter (unnamed) network namespaces via shell processes]
  2. Fun with .... – II [Suggested experiments for virtual networking between network namespaces/containers]
  3. Fun with ... – III[Connecting network namespaces (or containers) by veth devices and virtual Linux bridges]
  4. Fun with ... – IV[Virtual VLANs for network namespaces (or containers) and VLAN tagging at Linux bridge ports based on veth (sub-) interfaces]
  5. Fun with veth-devices, Linux bridges and VLANs in unnamed Linux network namespaces – VI[Creation of two virtual VLANs for 2 groups of network namespaces/containers by a Linux bridge]

Although we worked with Linux network namespaces only, the basic setups, commands and rules discussed so far are applicable for the network connection of (LXC) containers, too. Reason: Each container establishes (at least) its own network namespace - and the latter is where the container's network devices operate. So, at its core a test of virtual networking between the containers means a test of networking between different network namespaces with appropriate (virtual) devices. We do not always require full fledged containers; often the creation of network namespaces with proper virtual Ethernet devices is sufficient to check the functionality of a virtual network and e.g. packet filter rules for its devices.

Virtual network connectivity (of containers) typically depends on veth devices and virtual bridges/switches. In this post we look at virtual VLANs spanning 2 bridges.

Our achievements so far

We know already the Linux commands required to create and enter simple (unnamed) network namespaces and give them individual hostnames. We connected these namespaces directly with veth devices and with the help of a virtual Linux bridge. But namespaces/containers can also be arranged in groups participating in a separate isolated network environment - a VLAN. We saw that the core setup of virtual VLANs can be achieved just by configuring virtual Linux bridges appropriately: We define one or multiple VLANs by assigning VIDs/PVIDs to Linux bridge ports. The VLAN is established inside the bridge by controlling packet transport between ports. Packet tagging outside a bridge is not required for the creation of simple coexisting VLANs.

However, the rules governing the corresponding packet tagging at bridge ports depend on the port type: We, therefore, listed up rules both for veth sub-interfaces and trunk interfaces attached to bridges - and, of course, for incoming and outgoing packets. The tagging rules discussed in post IV allow for different setups of more complex VLANs - sometimes there are several solutions with different advantages and disadvantages.

Our first example in the last post were two virtual VLANs defined by a Linux bridge. Can we extend this simple scenario such that the VLANs span several hosts and/or several bridges on the same host? Putting containers (and their network namespaces) into separate VLANs which integrate several hosts is no academic exercise: Even in small environments we may find situations, where containers have to be placed on different hosts with independent HW resources.

Simulating the connection of two hosts

In reality two hosts, each with its own Linux bridge for network namespaces (or containers), would be connected by real Ethernet cards, possibly with sub-interfaces, and a cable. Each Ethernet card (or their sub-interfaces) would be attached to the local bridge of each host. Veths give us the functionality of 2 Ethernet devices connected by a cable. In addition, one can split each veth interfaces into sub-interfaces (see the last post!). So we can simulate all kinds of host connections by bride connections on one and the same host. In our growing virtual test environment (see article 2) we construct the area encircled with the blue dotted line:

Different setups for the connection of two bridges

Actually, there are two different ways how to connect two virtual bridges: We can attach VLAN sensitive sub-interfaces of Ethernet devices to the bridges OR we can use the standard interfaces and build "trunk ports".

Both variants work - the tagging of the Ethernet packets, however, occurs differently. The different ways of tagging become important in coming experiments with hosts belonging to 2 VLANs. (The differences, of course, also affect packet filter rules for the ports.) So, its instructive to cover both solutions.

Experiment 5.1 - Two virtual VLANs spanning two Linux bridges connected by (veth) Ethernet devices with sub-interfaces

We study the solution based on veth sub-interfaces first. Both virtual bridges shall establish two VLANs: "VLAN 1" (green) and "VLAN 2" (pink). Members of the green VLAN shall be able to communicate with each other, but not with members of the pink VLAN. And vice versa.

To enable such a solution our veth cable must transport packets tagged differently - namely according to their VLAN origin/destination. The following graphics displays the scenario in more detail:

PVID assignments to ports are indicated by dotted squares, VID assignments by squares with a solid border. Packets are symbolized by diamonds. The border color of the diamonds correspond to the tag color (VLAN ID).

Note that we also indicated some results of our tests of "experiment 4" in the last post:

At Linux bridge ports, which are based on sub-interfaces and which got a PVID assigned, any outside packet tags are irrelevant for the tagging inside the bridge. Inside the bridge a packet gets a tag according to the PVID of the port through which the packet enters the bridge!

If we accept this rule then we should be able to assign tags (VLAN IDs) to packets moving through the veth cable different from the tags used inside the bridges. Actually, we should even be able to use altogether different VIDs/PVIDs inside the second bridge, too, as long as we separate the namespace groups correctly. But let us start simple ...

Creating the network namespaces, Linux bridges and the veth sub-interfaces

The following command list sets up the environment including two bridges brx (in netns3) and bry (in netns8). Scroll to see all commands and copy it to a root shell prompt ...

unshare --net --uts /bin/bash &
export pid_netns1=$!
nsenter -t $pid_netns1 -u hostname netns1
unshare --net --uts /bin/bash &
export pid_netns2=$!
unshare --net --uts /bin/bash &
export pid_netns3=$!
unshare --net --uts /bin/bash &
export pid_netns4=$!
unshare --net --uts /bin/bash &
export pid_netns5=$!
unshare --net --uts /bin/bash &
export pid_netns6=$!
unshare --net --uts /bin/bash &
export pid_netns7=$!
unshare --net --uts /bin/bash &
export pid_netns8=$!

# assign different hostnames  
nsenter -t $pid_netns1 -u hostname netns1
nsenter -t $pid_netns2 -u hostname netns2
nsenter -t $pid_netns3 -u hostname netns3
nsenter -t $pid_netns4 -u hostname netns4
nsenter -t $pid_netns5 -u hostname netns5
nsenter -t $pid_netns6 -u hostname netns6
nsenter -t $pid_netns7 -u hostname netns7
nsenter -t $pid_netns8 -u hostname netns8

#set up veth devices in netns1 to netns4 with connection to netns3  
ip link add veth11 netns $pid_netns1 type veth peer name veth13 netns $pid_netns3
ip link add veth22 netns $pid_netns2 type veth peer name veth23 netns $pid_netns3
ip link add veth44 netns $pid_netns4 type veth peer name veth43 netns $pid_netns3
ip link add veth55 netns $pid_netns5 type veth peer name veth53 netns $pid_netns3

#set up veth devices in netns6 and netns7 with connection to netns8   
ip link add veth66 netns $pid_netns6 type veth peer name veth68 netns $pid_netns8
ip link add veth77 netns $pid_netns7 type veth peer name veth78 netns $pid_netns8

# Assign IP addresses and set the devices up 
nsenter -t $pid_netns1 -u -n /bin/bash
ip addr add 192.168.5.1/24 brd 192.168.5.255 dev veth11
ip link set veth11 up
ip link set lo up
exit
nsenter -t $pid_netns2 -u -n /bin/bash
ip addr add 192.168.5.2/24 brd 192.168.5.255 dev veth22
ip link set veth22 up
ip link set lo up
exit
nsenter -t $pid_netns4 -u -n /bin/bash
ip addr add 192.168.5.4/24 brd 192.168.5.255 dev veth44
ip link set veth44 up
ip link set lo up
exit
nsenter -t $pid_netns5 -u -n /bin/bash
ip addr add 192.168.5.5/24 brd 192.168.5.255 dev veth55
ip link set veth55 up
ip link set lo up
exit
nsenter -t $pid_netns6 -u -n /bin/bash
ip addr add 192.168.5.6/24 brd 192.168.5.255 dev veth66
ip link set veth66 up
ip link set lo up
exit
nsenter -t $pid_netns7 -u -n /bin/bash
ip addr add 192.168.5.7/24 brd 192.168.5.255 dev veth77
ip link set veth77 up
ip link set lo up
exit

# set up bridge brx and its ports 
nsenter -t $pid_netns3 -u -n /bin/bash
brctl addbr brx  
ip link set brx up
ip link set veth13 up
ip link set veth23 up
ip link set veth43 up
ip link set veth53 up
brctl addif brx veth13
brctl addif brx veth23
brctl addif brx veth43
brctl addif brx veth53
exit

# set up bridge bry and its ports 
nsenter -t $pid_netns8 -u -n /bin/bash
brctl addbr bry  
ip link set bry up
ip link set veth68 up
ip link set veth78 up
brctl addif bry veth68
brctl addif bry veth78
exit

Set up the VLANs

The following commands configure the VLANs by assigning PVIDs/VIDs to the bridge ports (see the last 2 posts for more information):

# set up 2 VLANs on each bridge 
nsenter -t $pid_netns3 -u -n /bin/bash
ip link set dev brx type bridge vlan_filtering 1
bridge vlan add vid 10 pvid untagged dev veth13
bridge vlan add vid 10 pvid untagged dev veth23
bridge vlan add vid 20 pvid untagged dev veth43
bridge vlan add vid 20 pvid untagged dev veth53
bridge vlan del vid 1 dev brx self
bridge vlan del vid 1 dev veth13
bridge vlan del vid 1 dev veth23
bridge vlan del vid 1 dev veth43
bridge vlan del vid 1 dev veth53
bridge vlan show
exit
nsenter -t $pid_netns8 -u -n /bin/bash
ip link set dev bry type bridge vlan_filtering 1
bridge vlan add vid 10 pvid untagged dev veth68
bridge vlan add vid 20 pvid untagged dev veth78
bridge vlan del vid 1 dev bry self
bridge vlan del vid 1 dev veth68
bridge vlan del vid 1 dev veth78
bridge vlan show
exit

 
We have a whole bunch of network namespaces now. Use "lsns" to get an overview. See the first 2 articles of the series, if you need an explanation of the commands used above and additional commands to get more information about the created namespaces and processes.

Note that we used VID 10, PVID 10 on the bridge ports to establish VLAN1 (green) and VID 20, PVID 20 to establish VLAN2 (pink). Note in addition that there is NO VLAN tagging required outside the bridges; thus the flag "untagged" to enforce Ethernet packets to leave the bridges untagged. Consistently, no sub-interfaces have been defined in the network namespace 1, 2, 4, 5, 6, 7. Note also, that we removed the PVID/VID = 1 default values from the ports.

The bridges are not connected, yet. Therefore, our next step is to create a connecting veth device with VLAN sub-interfaces - and to attach the sub-interfaces to the bridges :

#Create a veth device to connect the two bridges 
ip link add vethx netns $pid_netns3 type veth peer name vethy netns $pid_netns8
nsenter -t $pid_netns3 -u -n /bin/bash
ip link add link vethx name vethx.50 type vlan id 50
ip link add link vethx name vethx.60 type vlan id 60
brctl addif brx vethx.50
brctl addif brx vethx.60
ip link set vethx up
ip link set vethx.50 up
ip link set vethx.60 up
bridge vlan add vid 10 pvid untagged dev vethx.50
bridge vlan add vid 20 pvid untagged dev vethx.60
bridge vlan del vid 1 dev vethx.50
bridge vlan del vid 1 dev vethx.60
bridge vlan show
exit

nsenter -t $pid_netns8 -u -n /bin/bash
ip link add link vethy name vethy.50 type vlan id 50
ip link add link vethy name vethy.60 type vlan id 60
brctl addif bry vethy.50
brctl addif bry vethy.60
ip link set vethy up
ip link set vethy.50 up
ip link set vethy.60 up
bridge vlan add vid 10 pvid untagged dev vethy.50
bridge vlan add vid 20 pvid untagged dev vethy.60
bridge vlan del vid 1 dev vethy.50
bridge vlan del vid 1 dev vethy.60
bridge vlan show
exit

 
Note that we have used VLAN IDs 50 and 60 outside the bridge! Note also the VID/PVID settings and the flag "untagged" at our bridge ports vethx.50, vethx.60, vethy.50, vethy.60. The bridge internal tags of outgoing packets are first removed; afterwards the veth sub-interfaces re-tag outgoing packets automatically with tags for VLAN IDs 50,60.

However, we have kept up consistent tagging histories for packets propagating between the bridges and along the vethx/vethy line:

"10=>50=>10"

and

"20=>60=>20"

So, Ethernet packets nowhere cross the borders of our separated VLANs - if our theory works correctly.

Routing? 2 or 4 VLANs?

Routes for 192.168.5.0/24 were set up automatically in the network namespaces netns1, 2, 4, 5, 6, 7. You may check this by entering the namespaces with a shell (nsenter command) and using the command "route".

Note that we have chosen all IP address to be in the same class. All our virtual devices work on the network link layer (L1/2 of the OSI model). Further IP routing across the bridges is not required on this level. The correct association of IP addresses and MAC addresses across the bridges and all VLANs is instead managed by the ARP protocol.

Our network namespaces should be able to get into contact - as long as they belong to the "same" VLAN.

Note: Each bridge sets up its own 2 VLANs; so, actually, we have built 4 VLANs!. But the bridges are connected in such a way that packet transport works across these 4 VLANs as if they were only two VLANs spanning the bridges.

Tests

We first test whether netns7 can communicate with e.g. netns5, which it should. On the other side netns7 should not be able to ping e.g. netns1. It is instructive to open several terminal windows from our original terminal (on KDE e.g. by "konsole &>/dev/null &") and to enter different namespaces there to get an impression of what happens.

mytux:~ # nsenter -t $pid_netns7 -u -n /bin/bash
netns7:~ # ping 192.168.5.1 -c2
PING 192.168.5.1 (192.168.5.1) 56(84) bytes of data.
From 192.168.5.7 icmp_seq=1 Destination Host Unreachable
From 192.168.5.7 icmp_seq=2 Destination Host Unreachable

--- 192.168.5.1 ping statistics ---
2 packets transmitted, 0 received, +2 errors, 100% packet loss, time 1008ms
pipe 2
netns7:~ # ping 192.168.5.5 -c2
PING 192.168.5.5 (192.168.5.5) 56(84) bytes of data.
64 bytes from 192.168.5.5: icmp_seq=1 ttl=64 time=0.170 ms
64 bytes from 192.168.5.5: icmp_seq=2 ttl=64 time=0.087 ms

--- 192.168.5.5 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.087/0.128/0.170/0.043 ms
netns7:~ # 

And at the same time inside bry in netns8 :

mytux:~ # nsenter -t $pid_netns8 -u -n /bin/bash
netns8:~ # tcpdump -n -i bry  host 192.168.5.1 -e
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on bry, link-type EN10MB (Ethernet), capture size 262144 bytes
14:38:48.780367 8a:1e:62:e8:f3:c3 > ff:ff:ff:ff:ff:ff, ethertype 802.1Q (0x8100), length 46: vlan 20, p 0, ethertype ARP, Request who-has 192.168.5.1 tell 192.168.5.7, length 28
14:38:49.778559 8a:1e:62:e8:f3:c3 > ff:ff:ff:ff:ff:ff, ethertype 802.1Q (0x8100), length 46: vlan 20, p 0, ethertype ARP, Request who-has 192.168.5.1 tell 192.168.5.7, length 28
14:38:50.778574 8a:1e:62:e8:f3:c3 > ff:ff:ff:ff:ff:ff, ethertype 802.1Q (0x8100), length 46: vlan 20, p 0, ethertype ARP, Request who-has 192.168.5.1 tell 192.168.5.7, length 28
^C
3 packets captured
3 packets received by filter
0 packets dropped by kernel
netns8:~ # tcpdump -n -i bry  host 192.168.5.5 -e
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on bry, link-type EN10MB (Ethernet), capture size 262144 bytes
14:39:30.045117 8a:1e:62:e8:f3:c3 > ff:ff:ff:ff:ff:ff, ethertype 802.1Q (0x8100), length 46: vlan 20, p 0, ethertype ARP, Request who-has 192.168.5.5 tell 192.168.5.7, length 28
14:39:30.045184 2e:75:26:04:a9:70 > 8a:1e:62:e8:f3:c3, ethertype 802.1Q (0x8100), length 46: vlan 20, p 0, ethertype ARP, Reply 192.168.5.5 is-at 2e:75:26:04:a9:70, length 28
14:39:30.045193 8a:1e:62:e8:f3:c3 > 2e:75:26:04:a9:70, ethertype 802.1Q (0x8100), length 102: vlan 20, p 0, ethertype IPv4, 192.168.5.7 > 192.168.5.5: ICMP echo request, id 21633, seq 1, length 64
14:39:30.045247 2e:75:26:04:a9:70 > 8a:1e:62:e8:f3:c3, ethertype 802.1Q (0x8100), length 102: vlan 20, p 0, ethertype IPv4, 192.168.5.5 > 192.168.5.7: ICMP echo reply, id 21633, seq 1, length 64
14:39:31.044106 8a:1e:62:e8:f3:c3 > 2e:75:26:04:a9:70, ethertype 802.1Q (0x8100), length 102: vlan 20, p 0, ethertype IPv4, 192.168.5.7 > 192.168.5.5: ICMP echo request, id 21633, seq 2, length 64
14:39:31.044165 2e:75:26:04:a9:70 > 8a:1e:62:e8:f3:c3, ethertype 802.1Q (0x8100), length 102: vlan 20, p 0, ethertype IPv4, 192.168.5.5 > 192.168.5.7: ICMP echo reply, id 21633, seq 2, length 64
14:39:35.058576 2e:75:26:04:a9:70 > 8a:1e:62:e8:f3:c3, ethertype 802.1Q (0x8100), length 46: vlan 20, p 0, ethertype ARP, Request who-has 192.168.5.7 tell 192.168.5.5, length 28
14:39:35.058587 8a:1e:62:e8:f3:c3 > 2e:75:26:04:a9:70, ethertype 802.1Q (0x8100), length 46: vlan 20, p 0, ethertype ARP, Reply 192.168.5.7 is-at 8a:1e:62:e8:f3:c3, length 28
^C
8 packets captured
8 packets received by filter
0 packets dropped by kernel
netns8:~ # 

 

And parallel at vethx in netns3 :

mytux:~ # nsenter -t $pid_netns3 -u -n /bin/bash
netns3:~ # tcpdump -n -i vethx  host 192.168.5.1 -e
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on vethx, link-type EN10MB (Ethernet), capture size 262144 bytes
14:38:48.780381 8a:1e:62:e8:f3:c3 > ff:ff:ff:ff:ff:ff, ethertype 802.1Q (0x8100), length 46: vlan 60, p 0, ethertype ARP, Request who-has 192.168.5.1 tell 192.168.5.7, length 28
14:38:49.778582 8a:1e:62:e8:f3:c3 > ff:ff:ff:ff:ff:ff, ethertype 802.1Q (0x8100), length 46: vlan 60, p 0, ethertype ARP, Request who-has 192.168.5.1 tell 192.168.5.7, length 28
14:38:50.778594 8a:1e:62:e8:f3:c3 > ff:ff:ff:ff:ff:ff, ethertype 802.1Q (0x8100), length 46: vlan 60, p 0, ethertype ARP, Request who-has 192.168.5.1 tell 192.168.5.7, length 28
^C
3 packets captured
3 packets received by filter
0 packets dropped by kernel
netns3:~ # tcpdump -n -i vethx  host 192.168.5.5 -e
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on vethx, link-type EN10MB (Ethernet), capture size 262144 bytes
14:39:30.045131 8a:1e:62:e8:f3:c3 > ff:ff:ff:ff:ff:ff, ethertype 802.1Q (0x8100), length 46: vlan 60, p 0, ethertype ARP, Request who-has 192.168.5.5 tell 192.168.5.7, length 28
14:39:30.045182 2e:75:26:04:a9:70 > 8a:1e:62:e8:f3:c3, ethertype 802.1Q (0x8100), length 46: vlan 60, p 0, ethertype ARP, Reply 192.168.5.5 is-at 2e:75:26:04:a9:70, length 28
14:39:30.045210 8a:1e:62:e8:f3:c3 > 2e:75:26:04:a9:70, ethertype 802.1Q (0x8100), length 102: vlan 60, p 0, ethertype IPv4, 192.168.5.7 > 192.168.5.5: ICMP echo request, id 21633, seq 1, length 64
14:39:30.045246 2e:75:26:04:a9:70 > 8a:1e:62:e8:f3:c3, ethertype 802.1Q (0x8100), length 102: vlan 60, p 0, ethertype IPv4, 192.168.5.5 > 192.168.5.7: ICMP echo reply, id 21633, seq 1, length 64
14:39:31.044123 8a:1e:62:e8:f3:c3 > 2e:75:26:04:a9:70, ethertype 802.1Q (0x8100), length 102: vlan 60, p 0, ethertype IPv4, 192.168.5.7 > 192.168.5.5: ICMP echo request, id 21633, seq 2, length 64
14:39:31.044163 2e:75:26:04:a9:70 > 8a:1e:62:e8:f3:c3, ethertype 802.1Q (0x8100), length 102: vlan 60, p 0, ethertype IPv4, 192.168.5.5 > 192.168.5.7: ICMP echo reply, id 21633, seq 2, length 64
14:39:35.058573 2e:75:26:04:a9:70 > 8a:1e:62:e8:f3:c3, ethertype 802.1Q (0x8100), length 46: vlan 60, p 0, ethertype ARP, Request who-has 192.168.5.7 tell 192.168.5.5, length 28
14:39:35.058589 8a:1e:62:e8:f3:c3 > 2e:75:26:04:a9:70, ethertype 802.1Q (0x8100), length 46: vlan 60, p 0, ethertype ARP, Reply 192.168.5.7 is-at 8a:1e:62:e8:f3:c3, length 28
^C
8 packets captured
8 packets received by filter
0 packets dropped by kernel
netns3:~ # 
 

 
How does netns7 see the world afterwards?

netns7:~ # ip a s
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host 
       valid_lft forever preferred_lft forever
2: veth77@if3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default qlen 1000
    link/ether 8a:1e:62:e8:f3:c3 brd ff:ff:ff:ff:ff:ff link-netnsid 0
    inet 192.168.5.7/24 brd 192.168.5.255 scope global veth77
       valid_lft forever preferred_lft forever
    inet6 fe80::881e:62ff:fee8:f3c3/64 scope link 
       valid_lft forever preferred_lft forever
netns7:~ # arp -a
? (192.168.5.1) at <incomplete> on veth77
? (192.168.5.5) at 2e:75:26:04:a9:70 [ether] on veth77                                                                                                                           
netns7:~ #                 

We have a mirrored situation on netns6 with respect to netns1 and netns5. netns6 can reach netns1, but not netns5.

These results prove what we have claimed:

  • We have a separation of the VLANs across the bridges.
  • Inside the bridges only the ports' PVID-settings determine the VLAN tag (here 20) of incoming packets.
  • Along the veth "cable" we have a completely different tag (here 60 for packets which originally got tag 20 inside bry).

Let us cross check for netns2:

mytux:~ # nsenter -t $pid_netns2 -u -n /bin/bash
netns2:~ # ping 192.168.5.7 -c2
PING 192.168.5.7 (192.168.5.7) 56(84) bytes of data.
From 192.168.5.2 icmp_seq=1 Destination Host Unreachable
From 192.168.5.2 icmp_seq=2 Destination Host Unreachable

--- 192.168.5.7 ping statistics ---
2 packets transmitted, 0 received, +2 errors, 100% packet loss, time 999ms
pipe 2
netns2:~ # ping 192.168.5.6 -c2
PING 192.168.5.6 (192.168.5.6) 56(84) bytes of data.
64 bytes from 192.168.5.6: icmp_seq=1 ttl=64 time=0.154 ms
64 bytes from 192.168.5.6: icmp_seq=2 ttl=64 time=0.092 ms

--- 192.168.5.6 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.092/0.123/0.154/0.031 ms
netns2:~ # 

And how do the bridges see the world?

In netns8 and netns3 we have a closer look at the bridges:

netns8:~ # ip a s
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN group default qlen 1
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: veth68: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master bry state UP group default qlen 1000
    link/ether 0a:5b:60:31:7a:bd brd ff:ff:ff:ff:ff:ff link-netnsid 0
    inet6 fe80::85b:60ff:fe31:7abd/64 scope link 
       valid_lft forever preferred_lft forever
3: veth78@if2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master bry state UP group default qlen 1000
    link/ether 3e:f3:4b:26:02:46 brd ff:ff:ff:ff:ff:ff link-netnsid 1
    inet6 fe80::3cf3:4bff:fe26:246/64 scope link 
       valid_lft forever preferred_lft forever
4: bry: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default qlen 1000
    link/ether 0a:5b:60:31:7a:bd brd ff:ff:ff:ff:ff:ff
    inet6 fe80::30a5:8dff:fe54:987e/64 scope link 
       valid_lft forever preferred_lft forever
5: vethy@if7: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default qlen 1000
    link/ether 7a:86:31:14:57:2a brd ff:ff:ff:ff:ff:ff link-netnsid 2
    inet6 fe80::7886:31ff:fe14:572a/64 scope link 
       valid_lft forever preferred_lft forever
6: vethy.50@vethy: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master bry state UP group default qlen 1000
    link/ether 7a:86:31:14:57:2a brd ff:ff:ff:ff:ff:ff
    inet6 fe80::7886:31ff:fe14:572a/64 scope link 
       valid_lft forever preferred_lft forever
7: vethy.60@vethy: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master bry state UP group default qlen 1000
    link/ether 7a:86:31:14:57:2a brd ff:ff:ff:ff:ff:ff
    inet6 fe80::7886:31ff:fe14:572a/64 scope link 
       valid_lft forever preferred_lft forever
netns8:~ # bridge vlan show
port    vlan ids
veth68   10 PVID Egress Untagged                                                                                                                                                 
                                                                                                                                                                                 
veth78   20 PVID Egress Untagged                                                                                                                                                 
                                                                                                                                                                                 
bry     None
vethy.50 10 PVID Egress Untagged

vethy.60 20 PVID Egress Untagged
netns8:~ # brctl showmacs bry
port no mac addr                is local?       ageing timer
  1     0a:5b:60:31:7a:bd       yes                0.00
  1     0a:5b:60:31:7a:bd       yes                0.00
  4     2e:75:26:04:a9:70       no                 3.62
  2     3e:f3:4b:26:02:46       yes                0.00
  2     3e:f3:4b:26:02:46       yes                0.00
  4     7a:86:31:14:57:2a       yes                0.00
  3     7a:86:31:14:57:2a       yes                0.00
  3     7a:86:31:14:57:2a       yes                0.00
  3     7a:86:31:14:57:2a       yes                0.00
  2     8a:1e:62:e8:f3:c3       no                 3.62

 
 

netns3:~ # ip a s
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN group default qlen 1
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: veth13: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master brx state UP group default qlen 1000
    link/ether 52:9b:43:56:37:df brd ff:ff:ff:ff:ff:ff link-netnsid 0
    inet6 fe80::509b:43ff:fe56:37df/64 scope link 
       valid_lft forever preferred_lft forever
3: veth23@if2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master brx state UP group default qlen 1000
    link/ether 06:81:88:12:5d:dc brd ff:ff:ff:ff:ff:ff link-netnsid 1
    inet6 fe80::481:88ff:fe12:5ddc/64 scope link 
       valid_lft forever preferred_lft forever
4: veth43@if2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master brx state UP group default qlen 1000
    link/ether 56:d6:b2:80:9a:de brd ff:ff:ff:ff:ff:ff link-netnsid 2
    inet6 fe80::54d6:b2ff:fe80:9ade/64 scope link 
       valid_lft forever preferred_lft forever
5: veth53@if2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master brx state UP group default qlen 1000
    link/ether 12:58:a6:73:6c:6e brd ff:ff:ff:ff:ff:ff link-netnsid 3
    inet6 fe80::1058:a6ff:fe73:6c6e/64 scope link 
       valid_lft forever preferred_lft forever
6: brx: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default qlen 1000
    link/ether 06:81:88:12:5d:dc brd ff:ff:ff:ff:ff:ff
    inet6 fe80::8447:28ff:fe22:7a90/64 scope link 
       valid_lft forever preferred_lft forever
7: vethx@if5: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default qlen 1000
    link/ether b6:e9:ef:3d:1c:b7 brd ff:ff:ff:ff:ff:ff link-netnsid 4
    inet6 fe80::b4e9:efff:fe3d:1cb7/64 scope link 
       valid_lft forever preferred_lft forever
8: vethx.50@vethx: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master brx state UP group default qlen 1000
    link/ether b6:e9:ef:3d:1c:b7 brd ff:ff:ff:ff:ff:ff
    inet6 fe80::b4e9:efff:fe3d:1cb7/64 scope link 
       valid_lft forever preferred_lft forever
9: vethx.60@vethx: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master brx state UP group default qlen 1000
    link/ether b6:e9:ef:3d:1c:b7 brd ff:ff:ff:ff:ff:ff
    inet6 fe80::b4e9:efff:fe3d:1cb7/64 scope link 
       valid_lft forever preferred_lft forever
netns3:~ # bridge vlan show
port    vlan ids
veth13   10 PVID Egress Untagged

veth23   10 PVID Egress Untagged

veth43   20 PVID Egress Untagged

veth53   20 PVID Egress Untagged

brx     None                                                                                                                                                                     
vethx.50 10 PVID Egress Untagged                                                                                                                                                 
                                                                                                                                                                                 
vethx.60 20 PVID Egress Untagged
netns3:~ # brctl showmacs brx
port no mac addr                is local?       ageing timer
  2     06:81:88:12:5d:dc       yes                0.00
  2     06:81:88:12:5d:dc       yes                0.00
  4     12:58:a6:73:6c:6e       yes                0.00
  4     12:58:a6:73:6c:6e       yes                0.00
  4     2e:75:26:04:a9:70       no                 3.49
  1     52:9b:43:56:37:df       yes                0.00
  1     52:9b:43:56:37:df       yes                0.00
  3     56:d6:b2:80:9a:de       yes                0.00
  3     56:d6:b2:80:9a:de       yes                0.00
  6     8a:1e:62:e8:f3:c3       no                 3.49
  5     b6:e9:ef:3d:1c:b7       yes                0.00
  6     b6:e9:ef:3d:1c:b7       yes                0.00
  5     b6:e9:ef:3d:1c:b7       yes                0.00
  5     b6:e9:ef:3d:1c:b7       yes                0.00

 
And:

netns8:~ # brctl showmacs bry
port no mac addr                is local?       ageing timer
  1     0a:5b:60:31:7a:bd       yes                0.00
  1     0a:5b:60:31:7a:bd       yes                0.00
  4     2e:75:26:04:a9:70       no                 7.37
  2     3e:f3:4b:26:02:46       yes                0.00
  2     3e:f3:4b:26:02:46       yes                0.00
  4     7a:86:31:14:57:2a       yes                0.00
  3     7a:86:31:14:57:2a       yes                0.00
  3     7a:86:31:14:57:2a       yes                0.00
  3     7a:86:31:14:57:2a       yes                0.00
  2     8a:1e:62:e8:f3:c3       no                 7.37
  3     96:e8:d1:2c:b8:ad       no                 3.84
  1     ce:48:c6:8c:ee:1a       no                 3.84
netns8:~ # 

 

netns3:~ # brctl showmacs brx
port no mac addr                is local?       ageing timer
  2     06:81:88:12:5d:dc       yes                0.00
  2     06:81:88:12:5d:dc       yes                0.00
  4     12:58:a6:73:6c:6e       yes                0.00
  4     12:58:a6:73:6c:6e       yes                0.00
  4     2e:75:26:04:a9:70       no                12.48
  1     52:9b:43:56:37:df       yes                0.00
  1     52:9b:43:56:37:df       yes                0.00
  3     56:d6:b2:80:9a:de       yes                0.00
  3     56:d6:b2:80:9a:de       yes                0.00
  6     8a:1e:62:e8:f3:c3       no                12.48
  2     96:e8:d1:2c:b8:ad       no                 8.94
  5     b6:e9:ef:3d:1c:b7       yes                0.00
  6     b6:e9:ef:3d:1c:b7       yes                0.00
  5     b6:e9:ef:3d:1c:b7       yes                0.00
  5     b6:e9:ef:3d:1c:b7       yes                0.00
  5     ce:48:c6:8c:ee:1a       no                 8.94
netns3:~ # 

Obviously, our bridges learn during pings ...

Check of the independence of VLAN definitions on bry

Just for fun: Let us change the PVID/VID setting on bry:

# Changing PVID/VID in bry 
nsenter -t $pid_netns8 -u -n /bin/bash
bridge vlan add vid 36 pvid untagged dev veth68
bridge vlan add vid 46 pvid untagged dev veth78
bridge vlan add vid 36 pvid untagged dev vethy.50
bridge vlan add vid 46 pvid untagged dev vethy.60
bridge vlan del vid 10 dev vethy.50
bridge vlan del vid 10 dev veth68
bridge vlan del vid 20 dev vethy.60
bridge vlan del vid 20 dev veth78
bridge vlan show
exit

This leads to:

netns8:~ # bridge vlan show
port    vlan ids
veth68   36 PVID Egress Untagged

veth78   46 PVID Egress Untagged

bry     None
vethy.50         36 PVID Egress Untagged

vethy.60         46 Egress Untagged

But still:

netns2:~ # ping 192.168.5.7 -c2
PING 192.168.5.7 (192.168.5.7) 56(84) bytes of data.
From 192.168.5.2 icmp_seq=1 Destination Host Unreachable
From 192.168.5.2 icmp_seq=2 Destination Host Unreachable

--- 192.168.5.7 ping statistics ---
2 packets transmitted, 0 received, +2 errors, 100% packet loss, time 1009ms
pipe 2
netns2:~ # ping 192.168.5.6 -c2
PING 192.168.5.6 (192.168.5.6) 56(84) bytes of data.
64 bytes from 192.168.5.6: icmp_seq=1 ttl=64 time=0.120 ms
64 bytes from 192.168.5.6: icmp_seq=2 ttl=64 time=0.094 ms

--- 192.168.5.6 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.094/0.107/0.120/0.013 ms
netns2:~ # 

Experiment 5.2 - Two virtual VLANs spanning two Linux bridges connected by a veth based trunk line between trunk ports

Now let us look at another way of connecting the bridges. This time we use a real trunk connection without sub-interfaces. We then have to attach vethx directly to brx and vethy directly to bry. NO PVIDs must be used on the respective ports; however the flag "tagged" is required. And compared to the last settings in bry we have to go back to the PVID/VID values of 10, 20.

Our new connection model is displayed in the following graphics:

We need to change the present bridge and bridge port definitions accordingly. The commands, which you can enter at the prompt of your original terminal window are given below:

# Change vethx to trunk like interface in brx 
nsenter -t $pid_netns3 -u -n /bin/bash
brctl delif brx vethx.50
brctl delif brx vethx.60
ip link del dev vethx.50
ip link del dev vethx.60
brctl addif brx vethx
bridge vlan add vid 10 tagged dev vethx
bridge vlan add vid 20 tagged dev vethx
bridge vlan del vid 1 dev vethx
bridge vlan show
exit 

And

# Change vethy to trunk like interface in brx 
nsenter -t $pid_netns8 -u -n /bin/bash
brctl delif bry vethy.50
brctl delif bry vethy.60
ip link del dev vethy.50
ip link del dev vethy.60
brctl addif bry vethy
bridge vlan add vid 10 tagged dev vethy
bridge vlan add vid 20 tagged dev vethy
bridge vlan del vid 1 dev vethy
bridge vlan add vid 10 pvid untagged dev veth68
bridge vlan add vid 20 pvid untagged dev veth78
bridge vlan del vid 36 dev veth68
bridge vlan del vid 46 dev veth78
bridge vlan show
exit 

We get the following bridge/VLAN configurations:

netns8:~ # bridge vlan show                       
port    vlan ids
veth68   10 PVID Egress Untagged

veth78   20 PVID Egress Untagged

bry     None
vethy    10
         20

and

netns3:~ # bridge vlan show
port    vlan ids
veth13   10 PVID Egress Untagged

veth23   10 PVID Egress Untagged

veth43   20 PVID Egress Untagged

veth53   20 PVID Egress Untagged

brx     None
vethx    10
         20

Testing 2 VLANs spanning two bridges/Hosts with a trunk connection

We test by pinging from netns7:

netns7:~ # ping 192.168.5.1 -c2
PING 192.168.5.1 (192.168.5.1) 56(84) bytes of data.
From 192.168.5.7 icmp_seq=1 Destination Host Unreachable
From 192.168.5.7 icmp_seq=2 Destination Host Unreachable

--- 192.168.5.1 ping statistics ---
2 packets transmitted, 0 received, +2 errors, 100% packet loss, time 999ms
pipe 2
netns7:~ # 

This gives at the bridge device bry in netns8:

netns8:~ # tcpdump -n -i bry  host 192.168.5.1 -e
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on bry, link-type EN10MB (Ethernet), capture size 262144 bytes
15:31:15.527528 8a:1e:62:e8:f3:c3 > ff:ff:ff:ff:ff:ff, ethertype 802.1Q (0x8100), length 46: vlan 20, p 0, ethertype ARP, Request who-has 192.168.5.1 tell 192.168.5.7, length 28
15:31:16.526542 8a:1e:62:e8:f3:c3 > ff:ff:ff:ff:ff:ff, ethertype 802.1Q (0x8100), length 46: vlan 20, p 0, ethertype ARP, Request who-has 192.168.5.1 tell 192.168.5.7, length 28
15:31:17.526576 8a:1e:62:e8:f3:c3 > ff:ff:ff:ff:ff:ff, ethertype 802.1Q (0x8100), length 46: vlan 20, p 0, ethertype ARP, Request who-has 192.168.5.1 tell 192.168.5.7, length 28
^C
3 packets captured
3 packets received by filter
0 packets dropped by kernel
netns8:~ # 

At the outer side of vethx in netns3 we get :

netns3:~ # tcpdump -n -i vethx  host 192.168.5.1 -e
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on vethx, link-type EN10MB (Ethernet), capture size 262144 bytes
15:31:15.527543 8a:1e:62:e8:f3:c3 > ff:ff:ff:ff:ff:ff, ethertype 802.1Q (0x8100), length 46: vlan 20, p 0, ethertype ARP, Request who-has 192.168.5.1 tell 192.168.5.7, length 28
15:31:16.526561 8a:1e:62:e8:f3:c3 > ff:ff:ff:ff:ff:ff, ethertype 802.1Q (0x8100), length 46: vlan 20, p 0, ethertype ARP, Request who-has 192.168.5.1 tell 192.168.5.7, length 28
15:31:17.526605 8a:1e:62:e8:f3:c3 > ff:ff:ff:ff:ff:ff, ethertype 802.1Q (0x8100), length 46: vlan 20, p 0, ethertype ARP, Request who-has 192.168.5.1 tell 192.168.5.7, length 28
^C
3 packets captured
3 packets received by filter
0 packets dropped by kernel
netns3:~ # 

You see, how the packet tags have changed now: Due to the missing PVIDs at the ports for vethx, vethy and the flag "tagged" we get packets on the vethx/vethy connection line, which carry the original 20 tag they had inside the bridges.

So :

netns7:~ # ping 192.168.5.5 -c2
PING 192.168.5.5 (192.168.5.5) 56(84) bytes of data.
64 bytes from 192.168.5.5: icmp_seq=1 ttl=64 time=0.042 ms
64 bytes from 192.168.5.5: icmp_seq=2 ttl=64 time=0.092 ms

--- 192.168.5.5 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.042/0.067/0.092/0.025 ms
netns7:~ # 

Obviously, we can connect our bridges with a trunk line between trunk ports, too.

Exactly 2 VLANs spanning 2 bridges with a trunk connection

Note that we MUST provide identical PVID/VID values inside the bridges bry and brx when we use a trunk like connection! VLAN filtering at all bridge ports works in both directions - IN and OUT. As the Ethernet packets keep their VLAN tags when they leave or enter a bridge, we can not choose the VID/PVID values to be different in bry from brx. So, in contrast to the connection model with the sub-interfaces, we have no choices for PVID/VID assignments; we deal with exactly 2 and not 4 coupled VLANs.

Still, packets leave veth68, 78 and veth13, 23, 43, 53 untagged! The VLANs get established by the bridge and their connection line, alone.

Which connection model is preferable?

The connection model based on trunk port configurations looks simpler than the model based on veth sub-interfaces. However, the connection model based on sub-interfaces allows for much more flexibility and freedom! In addition, it may make it easier to define port related iptables filtering rules.

So, you have the choice how to extend (virtual) VLANs over several bridges/hosts.
Unfortunately, I have not yet tested for any performance differences.

VLANs spanning hosts with Linux bridges

Our test examples were tested on just one host. Is there any major difference when we instead look at 2 hosts, each with a virtual Linux bridge? Not, really. Our devices vethx and vethy would then be two real Ethernet cards like ethx and ethy. But you could make them slaves of the bridges, too, and you could split them into sub-interfaces.

So, our VLANs based on Linux bridge configurations would also work, if the bridges were located on different hosts. For both connection models ...

Conclusion

Network namespaces or containers can become members of virtual VLANs. The configuration of bridge ports determines the VLAN setup. We can easily extend such (virtual) VLANs from one bridge to other bridges - even if the bridges are located on different hosts. In addition, we have the choice whether we base the connection on ports based on sub-interfaces or pure trunk ports. This gives us a maximum of flexibility.

But: Our VLANs were strictly separated so far. In reality, however, we may find situations in which a host/container must be member of two VLANs (VLAN1 and VLAN2). How do the veth connections from/to a network namespace look like, if a user in this intermediate network namespace shall be able to talk to all containers/namespaces in VLAN1 and VLAN2?

This is the topic of the next post. Again, there will be 2 different solutions ....

Fun with veth-devices, Linux bridges and VLANs in unnamed Linux network namespaces – V

In the previous articles of this series

  1. Fun with veth-devices, Linux bridges and VLANs in unnamed Linux network namespaces – I
  2. Fun with veth-devices, Linux bridges and VLANs in unnamed Linux network namespaces – II
  3. Fun with veth-devices, Linux bridges and VLANs in unnamed Linux network namespaces – III
  4. Fun with veth-devices, Linux bridges and VLANs in unnamed Linux network namespaces – IV

we laid the foundations for working with VLANs in virtual networks between different network namespaces - or containers, if you like. In the last article (4) I provided rules and commands for establishing VLANs via the configuration of a virtual Linux bridge. We saw how we define VLANs and set VLAN IDs, e.g. with the help of sub-interfaces of veth pairs or at Linux bridge ports (VIDs, PVID).

We apply this knowledge now to build the network environment for an experiment 4, which we described already in the second post:

The objective of this experiment 4 is the setup of two separated virtual VLANs for 2 groups of 4 network namespaces (or containers) with the help of a Linux bridge in a separate fifth network namespace.

In VLANs packet transport is controlled on the link layer and not on the network layer of the TCP/IP protocol. An interesting question for all coming experiments will be, where and how the tagging of the Ethernet packets must occur. Experiment 4 will show that a virtual Linux bridge has a lot in common with real switches - and that in simple cases the bridge configuration alone can define the required VLANs.

Note that we will not use any firewall rules to achieve the separation of the network traffic! However, be aware of the fact that the prevention of ARP spoofing even in our simple scenario requires packet filtering (e.g. by netfilter iptables/ebtables rules).

Experiment 4

The experiment is illustrated in the upper left corner of the graphics below; we configure the area surrounded by the blue dotted line:

You recognize the drawing of our virtual test environment (discussed in the article 2). We set up (unnamed) network namespaces netns1, netns2, netns4, netns5 and of course netns3 with the help of commands discussed in article 1. Remember: The "names" netnx, actually, are hostnames! netns3 contains our bridge "brx".

VLAN IDs and VLAN tags are numbers. But for visualization purposes you can imagine that we give Ethernet packets that shall be exchanged between netns1 and netns2 a green tag and packets which travel between netns4 and netns5 a pink tag. The small red line between the respective ports inside the bridge represents the separation of our two groups of network namespaces (or containers) via 2 VLANs. For the meaning of other colors around some plug symbols see the text below.

For connectivity tests we need to watch packets of the ARP (address resolution) protocol and the propagation of ICMP packets. tcpdump will help us to identify such packets at selected interfaces.

Connect 4 network namespaces with the help of a (virtual) Linux bridge in a fifth namespace

As in our previous experiments (see post 2) we enter the following list of commands at a shell prompt. (You may just copy/paste them). The list is a bit lengthy, so you may have to scroll:

# set up namespaces 
unshare --net --uts /bin/bash &
export pid_netns1=$!
nsenter -t $pid_netns1 -u hostname netns1
unshare --net --uts /bin/bash &
export pid_netns2=$!
unshare --net --uts /bin/bash &
export pid_netns3=$!
unshare --net --uts /bin/bash &
export pid_netns4=$!
unshare --net --uts /bin/bash &
export pid_netns5=$!

# assign different hostnames  
nsenter -t $pid_netns1 -u hostname netns1
nsenter -t $pid_netns2 -u hostname netns2
nsenter -t $pid_netns3 -u hostname netns3
nsenter -t $pid_netns4 -u hostname netns4
nsenter -t $pid_netns5 -u hostname netns5

#set up veth devices 
ip link add veth11 netns $pid_netns1 type veth peer name veth13 netns $pid_netns3
ip link add veth22 netns $pid_netns2 type veth peer name veth23 netns $pid_netns3
ip link add veth44 netns $pid_netns4 type veth peer name veth43 netns $pid_netns3
ip link add veth55 netns $pid_netns5 type veth peer name veth53 netns $pid_netns3

# Assign IP addresses and set the devices up 
nsenter -t $pid_netns1 -u -n /bin/bash
ip addr add 192.168.5.1/24 brd 192.168.5.255 dev veth11
ip link set veth11 up
ip link set lo up
exit
nsenter -t $pid_netns2 -u -n /bin/bash
ip addr add 192.168.5.2/24 brd 192.168.5.255 dev veth22
ip link set veth22 up
ip link set lo up
exit
nsenter -t $pid_netns4 -u -n /bin/bash
ip addr add 192.168.5.4/24 brd 192.168.5.255 dev veth44
ip link set veth44 up
ip link set lo up
exit
nsenter -t $pid_netns5 -u -n /bin/bash
ip addr add 192.168.5.5/24 brd 192.168.5.255 dev veth55
ip link set veth55 up
ip link set lo up
exit

# set up the bridge 
nsenter -t $pid_netns3 -u -n /bin/bash
brctl addbr brx  
ip link set brx up
ip link set veth13 up
ip link set veth23 up
ip link set veth43 up
ip link set veth53 up
brctl addif brx veth13
brctl addif brx veth23
brctl addif brx veth43
brctl addif brx veth53
exit

lsns -t net -t uts

 
We expect that we can ping from each namespace to all the others. We open a subshell window (see the third post of the series), enter namespace netns5 there and ping e.g. netns2:

mytux:~
# nsenter -t $pid_netns5 -u -n /bin/bash
netns5:~ # ping 192.168.5.2 -c2
PING 192.168.5.2 (192.168.5.2) 56(84) bytes of data.
64 bytes from 192.168.5.2: icmp_seq=1 ttl=64 time=0.031 ms
64 bytes from 192.168.5.2: icmp_seq=2 ttl=64 time=0.029 ms

--- 192.168.5.2 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms                                        
rtt min/avg/max/mdev = 0.029/0.030/0.031/0.001 ms                                                    

So far so good.

Create and isolate two VLANs for two groups of network namespaces (or containers) via proper port configuration of a Linux bridge

We have not set up the ports of our bridge, yet, to handle different VLANs. A look into the rules discussed in the last post provides the necessary information, and we execute the following commands:

  
# set up 2 VLANs  
nsenter -t $pid_netns3 -u -n /bin/bash
ip link set dev brx type bridge vlan_filtering 1
bridge vlan add vid 10 pvid untagged dev veth13
bridge vlan add vid 10 pvid untagged dev veth23
bridge vlan add vid 20 pvid untagged dev veth43
bridge vlan add vid 20 pvid untagged dev veth53
bridge vlan del vid 1 dev brx self
bridge vlan del vid 1 dev veth13
bridge vlan del vid 1 dev veth23
bridge vlan del vid 1 dev veth43
bridge vlan del vid 1 dev veth53
bridge vlan show 
exit

Note:

For working on the bridge's Ethernet interface itself we need the "self" string.

Question: Where must and will VLAN tags be attached to network packets - inside or/and outside the bridge?
Answer: In our present scenario inside the bridge, only.

This is consistent with using the option "untagged" at all ports: Outside the bridge there are only untagged Ethernet packets.

The command "bridge VLAN show" gives us an overview over our VLAN settings and the corresponding port configuration:

netns3:~ # bridge vlan show
port    vlan ids
veth13   10 PVID Egress Untagged

veth23   10 PVID Egress Untagged

veth43   20 PVID Egress Untagged

veth53   20 PVID Egress Untagged

brx     None
netns3:~ # 

In our setup VID 10 corresponds to the "green" VLAN and VID 20 to the "pink" one.

Please note that there is absolutely no requirement to give the bridge itself an IP address or to define VLAN sub-interfaces of the bridge's own Ethernet interface. Treating and configuring the bridge itself as an Ethernet device may appear convenient and is a standard background operation of many applications, which configure bridges. E.g. of virt-manager. But in my opinion such an implicit configuration only leads to unclear and potentially dangerous situations for packet filtering. A bridge with an IP gets an additional and special, but fully operational interface to its environment (here to its network namespace) - besides the "normal" ports to clients. It is easy to forget this special interface. Actually, it even gets a default PVID and VID (value 1) assigned. But I delete these VID/PVID almost always to avoid any traffic at the bridges default interface. Personally, I use a bridge very, very seldom as an Ethernet device with an IP address. If I need a connection to the surrounding network namespace I use a veth device, instead. Then we have an explicitly defined port. In our experiment 4 such a connection is not required.

Testing the VLANs

Now we open 2 sub shell windows for entering our namespaces (in KDE e.g. by "konsole &>/dev/null &").

First we watch traffic from 192.168.5.1 through veth43 in netns3 in one of our shells:

mytux:~ # nsenter -t $pid_netns4 -u -n /bin/bash
netns3:~ # tcpdump -n -i veth43  host 192.168.5.1 -e
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on veth43, link-type EN10MB (Ethernet), capture size 262144 bytes

Then we open another shell and try to ping netns4 from netns1 :

mytux:~ # nsenter -t $pid_netns1 -u -n /bin/bash 
netns1:~ # ping 192.168.5.4
PING 192.168.5.4 (192.168.5.4) 56(84) bytes of data.
^C
--- 192.168.5.4 ping statistics ---
2 packets transmitted, 0 received, 100% packet loss, time 1007ms

Nothing happens at veth43 in netns3! This was to be expected as our VLAN for VID 10, of course, is isolated from VLAN with VID 20.

However, if we watch traffic on veth23 in netns3 and ping in parallel for netns2 and later for netns4 from netns1, we get (inside netns1):

netns1:~ # ping 192.168.5.2
PING 192.168.5.2 (192.168.5.2) 56(84) bytes of data.
64 bytes from 192.168.5.2: icmp_seq=1 ttl=64 time=0.090 ms
64 bytes from 192.168.5.2: icmp_seq=2 ttl=64 time=0.064 ms
^C
--- 192.168.5.2 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1000ms
rtt min/avg/max/mdev = 0.064/0.077/0.090/0.013 ms
netns1:~ # ^C
netns1:~ # ping 192.168.5.4
PING 192.168.5.4 (192.168.5.4) 56(84) bytes of data.
From 192.168.5.1 icmp_seq=1 Destination Host Unreachable
From 192.168.5.1 icmp_seq=2 Destination Host Unreachable
From 192.168.5.1 icmp_seq=3 Destination Host Unreachable
^C
--- 192.168.5.4 ping statistics ---
6 packets transmitted, 0 received, +3 errors, 100% packet loss, time 5031ms                          
pipe 3                                

At the same time in netns3:

netns3:~ # tcpdump -n -i veth23  host 192.168.5.1 -e
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on veth23, link-type EN10MB (Ethernet), capture size 262144 bytes
16:13:59.748075 f2:3d:63:de:a8:41 > 6e:12:2e:cf:c1:25, ethertype IPv4 (0x0800), length 98: 192.168.5.1 > 192.168.5.2: ICMP echo request, id 29195, seq 1, length 64
16:13:59.748106 6e:12:2e:cf:c1:25 > f2:3d:63:de:a8:41, ethertype IPv4 (0x0800), length 98: 192.168.5.2 > 192.168.5.1: ICMP echo reply, id 29195, seq 1, length 64
16:14:00.748326 f2:3d:63:de:a8:41 > 6e:12:2e:cf:c1:25, ethertype IPv4 (0x0800), length 98: 192.168.5.1 > 192.168.5.2: ICMP echo request, id 29195, seq 2, length 64
16:14:00.748337 6e:12:2e:cf:c1:25 > f2:3d:63:de:a8:41, ethertype IPv4 (0x0800), length 98: 192.168.5.2 > 192.168.5.1: ICMP echo reply, id 29195, seq 2, length 64
16:16:48.630614 f2:3d:63:de:a8:41 > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 42: Request who-has 192.168.5.4 tell 192.168.5.1, length 28
16:16:49.628213 f2:3d:63:de:a8:41 > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 42: Request who-has 192.168.5.4 tell 192.168.5.1, length 28
16:16:50.628220 f2:3d:63:de:a8:41 > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 42: Request who-has 192.168.5.4 tell 192.168.5.1, length 28
16:16:51.645477 f2:3d:63:de:a8:41 > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 42: Request who-has 192.168.5.4 tell 192.168.5.1, length 28
16:16:52.644229 f2:3d:63:de:a8:41 > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 42: Request who-has 192.168.5.4 tell 192.168.5.1, length 28
16:16:53.644171 f2:3d:63:de:a8:41 > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 42: Request who-has 192.168.5.4 tell 192.168.5.1, length 28
^C
10 packets captured
10 packets received by filter
0 packets dropped by kernel

You may test the other communication channels in the same way. Obviously, we have succeeded in isolating a "green" communication area from a "pink" one! On the link layer level - i.e. despite the fact that all members of both VLANs belong to the same IP network class!

Note that even a user on the host can not see the traffic inside the two VLANs directly; he/she does not even see the network interfaces with "ip a s" as they all are located in network namespaces different from its own ...

VLAN tags on packets outside the bridge?

Just for fun (and for the preparation of coming experiments) we want to try and assign a "brown" tag to packets outside the bridge, namely those moving along the veth connection line to netns2.

On real Ethernet devices you need to define sub-devices to achieve a VLAN tagging. Actually, this works with veth interfaces, too! With the following command list we extend each of our interfaces veth22 and veth23 by a sub-interface. We assign the IP address 192.168.5.2 afterwards to the sub-interface veth22.50 of veth22 (instead of veth22 itself). Instead of veth23 we then plug its new sub-interface into our virtual bridge to terminate the connection correctly.

# Replace veth22, veth23 with sub-interfaces 
nsenter -t $pid_netns3 -u -n /bin/bash
brctl delif brx veth23
ip link add link veth23 name veth23.50 type vlan id 50
ip link set veth23.50 up
brctl addif brx veth23.50 
exit 
nsenter -t $pid_netns2 -u -n /bin/bash
ip addr del 192.168.5.2/24 brd 192.168.5.255 dev veth22
ip link add link veth22 name veth22.50 type vlan id 50
ip addr add 192.168.5.2/24 brd 192.168.5.255 dev veth22.50
ip link set veth22.50 up
bridge vlan add vid 10 pvid untagged dev veth23.50
bridge vlan del vid 1 dev veth23.50
exit 

The PVID/VID-setting is done for the new sub-interface "veth23.50" on the bridge! Note that the "green" VID 10 inside the bridge is different from the VLAN ID 50, which is used outside the bridge ("brown" tags). According to the rules presented in the last article this should not have any impact on our VLANs:

Tags of incoming packets entering the bridge via veth23 are removed and replaced the green tag (10) before forwarding occurs inside the bridge. Outgoing packets first get their green tag removed due to the fact that we have marked the port with the flag "untagged". But on the outside of the bridge the veth sub-interface re-marks the packets with the "brown" tag.

We ping netns2

netns1:~ # ping 192.168.5.2 -c3
PING 192.168.5.2 (192.168.5.2) 56(84) bytes of data.
64 bytes from 192.168.5.2: icmp_seq=1 ttl=64 time=0.099 ms
64 bytes from 192.168.5.2: icmp_seq=2 ttl=64 time=0.055 ms
64 bytes from 192.168.5.2: icmp_seq=3 ttl=64 time=0.094 ms

--- 192.168.5.2 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1998ms
rtt min/avg/max/mdev = 0.055/0.082/0.099/0.022 ms
netns1:~ # 

and capture the respective packets at "veth23" with tcpdump:

netns3:~ # bridge vlan show
port    vlan ids
veth13   10 PVID Egress Untagged

veth43   20 PVID Egress Untagged

veth53   20 PVID Egress Untagged

brx     None
veth23.50        10 PVID Egress Untagged

netns3:~ # tcpdump -n -i veth23  host 192.168.5.1 -e
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on veth23, link-type EN10MB (Ethernet), capture size 262144 bytes         
17:38:55.962118 f2:3d:63:de:a8:41 > 6e:12:2e:cf:c1:25, ethertype 802.1Q (0x8100), length 102: vlan 50, p 0, ethertype IPv4, 192.168.5.1 > 192.168.5.2: ICMP echo request, id 1772, seq 1, length 64
17:38:55.962155 6e:12:2e:cf:c1:25 > f2:3d:63:de:a8:41, ethertype 802.1Q (0x8100), length 102: vlan 50, p 0, ethertype IPv4, 192.168.5.2 > 192.168.5.1: ICMP echo reply, id 1772, seq 1, length 64
17:38:56.961095 f2:3d:63:de:a8:41 > 6e:12:2e:cf:c1:25, ethertype 802.1Q (0x8100), length 102: vlan 50, p 0, ethertype IPv4, 192.168.5.1 > 192.168.5.2: ICMP echo request, id 1772, seq 2, length 64
17:38:56.961116 6e:12:2e:cf:c1:25 > f2:3d:63:de:a8:41, ethertype 802.1Q (0x8100), length 102: vlan 50, p 0, ethertype IPv4, 192.168.5.2 > 192.168.5.1: ICMP echo reply, id 1772, seq 2, length 64
17:38:57.960293 f2:3d:63:de:a8:41 > 6e:12:2e:cf:c1:25, ethertype 802.1Q (0x8100), length 102: vlan 50, p 0, ethertype IPv4, 192.168.5.1 > 192.168.5.2: ICMP echo request, id 1772, seq 3, length 64
17:38:57.960328 6e:12:2e:cf:c1:25 > f2:3d:63:de:a8:41, ethertype 802.1Q (0x8100), length 102: vlan 50, p 0, ethertype IPv4, 192.168.5.2 > 192.168.5.1: ICMP echo reply, id 1772, seq 3, length 64
17:39:00.976243 6e:12:2e:cf:c1:25 > f2:3d:63:de:a8:41, ethertype 802.1Q (0x8100), length 46: vlan 50, p 0, ethertype ARP, Request who-has 192.168.5.1 tell 192.168.5.2, length 28
17:39:00.976278 f2:3d:63:de:a8:41 > 6e:12:2e:cf:c1:25, ethertype 802.1Q (0x8100), length 46: vlan 50, p 0, ethertype ARP, Reply 192.168.5.1 is-at f2:3d:63:de:a8:41, length 28

Note the information " ethertype 802.1Q (0x8100), length 46: vlan 50" which proves the tagging with 50 outside the bridge.

Note further that we needed to capture on device veth23 - on device veth23.50 we do not see the tagging:

  
netns3:~ # tcpdump -n -i veth23.50  host 192.168.5.1 -e
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on veth23.50, link-type EN10MB (Ethernet), capture size 262144 bytes
17:45:29.015840 f2:3d:63:de:a8:41 > 6e:12:2e:cf:c1:25, ethertype IPv4 (0x0800), length 98: 192.168.5.1 > 192.168.5.2: ICMP echo request, id 2222, seq 1, length 64
17:45:29.015875 6e:12:2e:cf:c1:25 > f2:3d:63:de:a8:41, ethertype IPv4 (0x0800), length 98: 192.168.5.2 > 192.168.5.1: ICMP echo reply, id 2222, seq 1, length 64

Can we see the tagging inside the bridge? Yes, we can:

netns3:~ # tcpdump -n -i brx  host 192.168.5.1 -e
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on brx, link-type EN10MB (Ethernet), capture size 262144 bytes
17:51:41.563316 f2:3d:63:de:a8:41 > 6e:12:2e:cf:c1:25, ethertype 802.1Q (0x8100), length 102: vlan 10, p 0, ethertype IPv4, 192.168.5.1 > 192.168.5.2: ICMP echo request, id 2535, seq 1, length 64
17:51:41.563343 6e:12:2e:cf:c1:25 > f2:3d:63:de:a8:41, ethertype 802.1Q (0x8100), length 102: vlan 10, p 0, ethertype IPv4, 192.168.5.2 > 192.168.5.1: ICMP echo reply, id 2535, seq 1, length 64
17:51:42.562333 f2:3d:63:de:a8:41 > 6e:12:2e:cf:c1:25, ethertype 802.1Q (0x8100), length 102: vlan 10, p 0, ethertype IPv4, 192.168.5.1 > 192.168.5.2: ICMP echo request, id 2535, seq 2, length 64
17:51:42.562387 6e:12:2e:cf:c1:25 > f2:3d:63:de:a8:41, ethertype 802.1Q (0x8100), length 102: vlan 10, p 0, ethertype IPv4, 192.168.5.2 > 192.168.5.1: ICMP echo reply, id 2535, seq 2, length 64
17:51:43.561327 f2:3d:63:de:a8:41 > 6e:12:2e:cf:c1:25, ethertype 802.1Q (0x8100), length 102: vlan 10, p 0, ethertype IPv4, 192.168.5.1 > 192.168.5.2: ICMP echo request, id 2535, seq 3, length 64
17:51:43.561367 6e:12:2e:cf:c1:25 > f2:3d:63:de:a8:41, ethertype 802.1Q (0x8100), length 102: vlan 10, p 0, ethertype IPv4, 192.168.5.2 > 192.168.5.1: ICMP echo reply, id 2535, seq 3, length 64
17:51:46.576259 6e:12:2e:cf:c1:25 > f2:3d:63:de:a8:41, ethertype 802.1Q (0x8100), length 46: vlan 10, p 0, ethertype ARP, Request who-has 192.168.5.1 tell 192.168.5.2, length 28
17:51:46.576276 f2:3d:63:de:a8:41 > 6e:12:2e:cf:c1:25, ethertype 802.1Q (0x8100), length 46: vlan 10, p 0, ethertype ARP, Reply 192.168.5.1 is-at f2:3d:63:de:a8:41, length 28
^C

Note: "ethertype 802.1Q (0x8100), length 46: vlan 10". Inside the bridge we have the tag 10 - as expected. In our setup the external VLAN tagging is irrelevant!

The separation of communication paths between different ports inside of the bridge can be controlled by the bridge setup alone - independent of any VLAN packet tagging, which may occur outside the bridge!

This enhances security: VLAN tags can be manipulated outside the bridge. But as such tags get stripped when packets enter the bridge via ports based on veth sub-interfaces, this won't help an attacker so much .... :-).

For certain purposes we can (and will) use VLAN tagging also along certain connections outside the bridge - but the control and isolation of network paths between containers on one and the same virtualization host normally does not require VLAN tagging outside a bridge. The big exception is of course when routing to the outside world is required. But this is the topic of later blog posts.

If you like, you can now test that one can not ping e.g. netns5 from netns2. This will not be possible as inside the bridge packets from netns2 get tags for the VLAN ID 10 as we have seen - and neither the port based on veth43 nor the port for veth53 will allow any such packets to pass.

VLANs support security, but traffic separation alone is not sufficient. Some spoofing attack vectors would try to flood the bridge with wrong information about MACs. The dynamic learning of a port-MAC relation then becomes a disadvantage. One may think that the bridges's internal tagging would nevertheless block a packet misdirection to the wrong VLAN. However, the real behavior may depend on details of the bridges's handling of the protocol stacks and the point when tagging occurs. I do not understand enough, yet, about this. So, better work proactively:
There are parameters by which you can make the port-MAC relations almost static. Use them and implement netfilter rules in addition! You need such rules anyway to avoid ARP spoofing within each VLAN.

Traffic between VLANs?

If you for some reasons need to allow for traffic between you have to establish routing outside the bridge and limit the type of traffic allowed by packet filter rules. A typical scenario would be that some clients in one VLAN need access to services (special TCP ports) of a container in a network namespace attached to another VLAN. I do not follow this road here, yet, because right now I am more interested in isolation. But see the following links for examples of routing between VLANs :
https://serverfault.com/questions/779115/forward-traffic-between-vlans-with-iptables
https://www.riccardoriva.info/blog/?p=35

Conclusion

Obviously, we can use a virtual Linux bridge in a separate network namespace to isolate communication paths between groups of other network namespaces against each other. This can be achieved by making the bridge VLAN aware and by setting proper VIDs, PVIDs on the bridge ports of veth interfaces. Multiple VLANs can thus be establish by just one bride. We have shown that the separation works even if all members of both VLANs belong to the same IP network class.

We did not involve the bridge's own Ethernet interface and we did not need any packet tagging outside the bridge to achieve our objective. In our case it was not necessary to define sub-interfaces on either side of our veth connections. But even if we had used sub-interfaces and tagging outside the bridge it would not have destroyed the operation of our VLANs. The bridge itself establishes the VLANs; thinking virtual VLANs means thinking virtual bridges/switches - at least since kernel 3.9!

If we associated the four namespaces with 4 LXC containers our experiment 4 would correspond to a typical scenario for virtual networking on a host, whose containers are arranged in groups. Only members of a group are allowed to communicate with each other. How about extending such a grouping of namespaces/containers to another host? We shall simulate such a situation in the next blog post ...

Fun with veth-devices, Linux bridges and VLANs in unnamed Linux network namespaces – VI

Stay tuned !