Fun with shear operations and SVD – V – matrices of sheared n-dimensional ellipsoids

This post requires Javascript to display formulas!

In my previous post of the series

Fun with shear operations and SVD – I – shear matrices and examples created with Blender
Fun with shear operations and SVD – II – Shearing of rectangles and cubes with Python and Matplotlib
Fun with shear operations and SVD – III – Shearing of circles
Fun with shear operations and SVD – IV – Shearing of ellipses

we have studied the transformation of an ellipse by a shear operation. The coordinates of points on an ellipse and the components of respective position vectors fulfill a quadratic equation (quadratic form):

\[
\alpha_o\,x_o^2 \, + \, \beta_o \, x_o y_o \, + \, \gamma_o \, y_o^2 \:=\: \delta_o
\]

An equivalent matrix equation for respective vectors \( \left(\,x_o,\, y_o\,\right)^T \) is

\[
\left(\,x_o,\, y_o\,\right) \,\circ\, \pmb{\operatorname{A}}_q^O \,\circ\, \left(\,x_o,\, y_o\,\right)^T \: = \: \delta_o
\]

The superscript “T” symbolizes the transposition operation. The symmetric (2×2)-matrix \( \pmb{\operatorname{A}}_q^O \) defines the original, unsheared ellipse. The suffix “q” indicates the quadratic form. I have shown how the shear parameter λS impacts the coefficients of a corresponding (2×2)-matrix \(\pmb{\operatorname{A}}_q^S \) that defines the sheared ellipse.

What I have not done in the last post is to show how our matrix \(\pmb{\operatorname{A}}_q^S \) is related to a shear matrix \(\pmb{\operatorname{M}}_{sh} \) (see the first post), which describes the effect of the shear on the vectors \( \left(\,x_o,\, y_o\,\right)^T \). I am going to discuss this below. The given matrix relations will also be valid for general n-dimensional ellipsoids.

Matrix relations as discussed below are helpful to accelerate numerical calculations as Numpy (in cooperation with libraries for your OS) provides highly optimized modules for matrix operations. n-dimensional ellipsoids furthermore characterize hyper-surfaces of multivariate normal distributions which appear in certain areas of Machine Learning and respective data.

Matrix describing a centered n-dimensional ellipsoid

We consider n-dimensional and centered ellipsoids whose symmetry centers coincide with the origin of the Euclidean coordinate system [ECS] we work with. A position vector \(\left(\,x_1^o,\, x_2^o\, \cdots x_n^o \right)^T \)

\[
\pmb{x_o} \: = \: \begin{pmatrix} x_1^o \\ x_2^o \\ \vdots \\ x_n^o \end{pmatrix}
\]

is a vector drawn from the origin to a point on the ellipsoid’s hyper-surface. Note that a general vector of a vector space has no reference to a coordinate system’s origin. Therefore the distinction. A general ellipsoid is defined by a quadratic form in the components of its position vectors. The quadratic form is equivalent to the following matrix equation

\[
\left(\pmb{x_o}\right)^T \,\circ\, \pmb{\operatorname{A}}_{qn}^O \,\circ\, \pmb{x_o} \: = \: 1
\]

where \(\pmb{\operatorname{A}}_{qn}^O \) now represents a symmetric (nxn)-matrix. The “\( \circ \)” symbolizes a matrix product.

Note: A coefficient \( \delta \gt 0 \) which we have used in previous posts on the right side of the equation can be included in the coefficient values of the matrix).

Note that the equations above define an ellipsoid up to a translation vector. This is reflected in the fact that the above equation does not create any linear terms.

Quadratic forms not only define ellipsoids. For an ellipsoid we have to assume that the determinant of\(\pmb{\operatorname{A}}_{qn}^O \) is > 0 and that the matrix is invertible:

\[
\operatorname{det} \left(\pmb{\operatorname{A}}_{qn}^O \right) \: \gt \: 0
\]

Note that you could choose an ECS in which the ellipsoid’s principal axes would align with the ECS’s coordinate axes. Such a choice would correspond to a PCA-transformation of the vector data. \(\pmb{\operatorname{A}}_{qn}^O \) would then become diagonal. This corresponds to the fact that a symmetric matrix always has an eigenvalue-decomposition.

Equation of the quadratic form for the sheared ellipsoid

In the first post of this series I have defined a (invertible) shear matrix as a unipotent matrix \( \pmb{\operatorname{M}}_{sh} \) with all coefficients of the lower triangular part, off the diagonal, being equal to 0.0 and all elements on the diagonal being equal to 1:

\[ \pmb{\operatorname{M}}_{sh} \, = \,
\begin{pmatrix}
1 & m_{12} &\cdots & m_{1n}(\ne0) \\
0 & 1 &\cdots & m_{2n} \\
\vdots &\vdots &\ddots &\vdots \\
0 & 0 &\cdots & 1 \end{pmatrix}
\]

Note:

\[ \operatorname{det} \left(\pmb{\operatorname{M}}_{sh}\right) : = \: 1
\]

So an inverse matrix \( \pmb{\operatorname{M}}_{sh}^{-1} \) exists. Shearing our original ellipse (with position vectors \( \pmb{x_o} \)) leads to new vectors \( \pmb{x_S} \):

\[
\pmb{x_S} \: =\: \,\pmb{\operatorname{M}}_{sh} \,\circ\, \pmb{x_o}
\]

We insert \( \pmb{x_S} \) into our defining equation of the original ellipsoid to derive a matrix equation for the sheared ellipsoid:

\[
\left[ \, \pmb{\operatorname{M}}_{sh}^{-1} \,\circ\, \pmb{x_S} \, \right]^T \,\circ\, \pmb{\operatorname{A}}_{qn}^O \,\circ\, \left[ \, \pmb{\operatorname{M}}_{sh}^{-1} \,\circ\, \pmb{x_S} \, \right] \: = \: 1
\]

Giving:

\[
\left(\pmb{x_S}\right)^T \,\circ\, \left[ \, \left( \, \pmb{\operatorname{M}}_{sh}^{-1} \, \right)^T \,\circ\, \pmb{\operatorname{A}}_{qn}^O \,\circ\, \, \pmb{\operatorname{M}}_{sh}^{-1} \, \right] \,\circ\, \pmb{x_S} \: = \: 1
\]

This, obviously, is a new definition equation for a quadratic form in the components of \( \pmb{x_S} \) with a matrix

\[
\pmb{\operatorname{A}}_{qn}^S \:=\: \left( \, \pmb{\operatorname{M}}_{sh}^{-1} \, \right)^T \,\circ\, \pmb{\operatorname{A}}_{qn}^O \,\circ\, \, \pmb{\operatorname{M}}_{sh}^{-1}
\]

We also find:

\[
\operatorname{det}\left(\pmb{\operatorname{A}}_{qn}^S \right) \:=\: \operatorname{det}\left(\pmb{\operatorname{A}}_{qn}^O \right) \: \gt \: 0
\]

From this we can conclude with confidence that we again have gotten a n-dimensional ellipsoid.

Inclusion of a SVD eigendecomposition of MS

A “Singular Value Decomposition” [SVD] can be applied to any (nxm)-matrix Q (with n > m):

\[
\pmb{\operatorname{Q}} \:=\: \pmb{\operatorname{U}} \,\circ\, \pmb{\operatorname{\Sigma}} \,\circ\, \, \pmb{\operatorname{V}}^T
\]

The (nxn)-matrix U and the (mxm)-matrix V are orthonormal matrices:

\[ \begin{align}
\pmb{\operatorname{U}} \,\circ\, \pmb{\operatorname{U}}^T \:&=\: 1 \\
\pmb{\operatorname{V}} \,\circ\, \pmb{\operatorname{V}}^T \:&=\: 1
\end{align}
\]

Σ is a diagonal (nxm)-matrix with singular values. The column-vectors of U and V are orthogonal singular vectors. Geometrically, U and V can be interpreted s rotational operations.

Therefore, we can decompose a (nxn) upper triangular shear-matrix into two orthonormal (nxn)-matrices U and V plus a diagonal matrix Σ :

\[
\pmb{\operatorname{M}}_{sh} \:=\: \pmb{\operatorname{U}} \,\circ\, \pmb{\operatorname{\Sigma}} \,\circ\, \, \pmb{\operatorname{V}}^T
\]

This leads to

\[ \begin{align}
\pmb{\operatorname{M}}_{sh}^{-1} \:&=\: \left[\pmb{\operatorname{V}}^T\right]^{-1} \,\circ\, \pmb{\operatorname{\Sigma}}^{-1} \,\circ\, \, \pmb{\operatorname{U}}^{-1} \\
&=\: \pmb{\operatorname{V}} \,\circ\, \pmb{\operatorname{\Sigma}}^{-1} \,\circ\, \pmb{\operatorname{U}}^T
\end{align}
\]

This gives us an alternative form to define the inverse shear matrix. Note that the order of the matrices in the matrix products is essential.

An example for the case of a sheared ellipse

We use the example of a sheared ellipse discussed in the last post to verify the results above numerically for a 2-dim case. To write a respective Python/Numpy-program is simple. I will just give you my numerical results below.

We have used an ellipse with the longer and shorter primary axes having values a = 2 and b = 1, respectively. The ellipse was rotated by 60° against the ECS-axes.

The respective (2×2)-matrix \( \pmb{\operatorname{A}}_q^O \) had the following coefficients

\[
\pmb{\operatorname{A}}_q^O \: = \: \begin{pmatrix} \alpha_o & 1/2\, \beta_o \\ 1/2\,\beta_o & \gamma_o \end{pmatrix} \:=\:
\begin{pmatrix} 3.25 & -1.29903811 \\ -1.29903811 & 1.75 \end{pmatrix}
\]

to fulfill

\[
\alpha_o\,x_o^2 \, + \, \beta_o \, x_o y_o \, + \, \gamma_o \, y_o^2 \:=\: \delta_o \:=\: 4.0
\]

The shear matrix (with λS = 0.6) was

\[
\pmb{\operatorname{M}}_{sh} \:=\: \begin{pmatrix} 1.0 & 0.6 \\ 0.0 & 1.0 \end{pmatrix}
\]

The resulting sheared ellipse became

For an ellipse we have shown that \(\pmb{\operatorname{A}}_q^S \) is given by

\[
\pmb{\operatorname{A}}_q^S \: = \: \begin{pmatrix} \alpha_o & 1/2\,\left(\beta_o \,-\,2 \alpha_o \lambda_S \right) \\
1/2\,\left(\beta_o \,-\,2 a_o \lambda_S \right) & \alpha_o \, \lambda_S^2 \, -\, \beta_o \lambda_S \,+\, \gamma_o \end{pmatrix}
\]

From this we get the following numerical values:

A_q^S = 
 [[ 3.25       -3.24903811]
 [-3.24903811  4.47884573]]

Via the Python-statement

M_sh_inv = np.linalg.inv(M_sh)

and

A_q^S_2 = M_sh_inv.T @ A_q @ M_sh_inv

we get the following values

A_q^S_2 = 
 [[ 3.25       -3.24903811]
 [-3.24903811  4.47884573]]

Identical! Using

U_sh, S, Vt_sh = np.linalg.svd(M_sh, full_matrices=True)
S_sh = np.diag(S)
M_sh_2 = U_sh @ S_sh @ Vt_sh
M_sh_inv_2 = Vt_sh.T @ np.linalg.inv(S_sh) @ U_sh.T
A_q^S_2 = M_sh_inv_2.T @ A_q @ M_sh_inv_2

we also reproduce the exactly same values.

Conclusion

We have shown how a shear matrix \( \pmb{\operatorname{M}}_{sh} \) transforms the matrix \(\pmb{\operatorname{A}}_{qn}^O \) which defines an un-sheared n-dimensional ellipsoid into a matrix \(\pmb{\operatorname{A}}_{qn}^S \) defining its sheared counterpart. We have also had a glimpse on a SVD decomposition of a shear matrix. The results will enable us in the next post to apply shear operations on a concrete example of a 3-dimensional ellipsoid.

 

Neu bahn.de-Website – Bahncard und Bonuspunkte werden in den Kunden-Account ggf. nicht übernommen

Die neue Web-Seite bzw. App der Bahn hielt heute eine weitere Überraschung für uns bereit: Im unseren Kundenaccounts bei der Bahn waren im Gegensatz zur alten Site weder Bahncard noch Bahnbonuspunkte zu finden. Dabei erwies sich das Verhalten von App und Web-Seite (Browser) als unterschiedlich:

  • Für meine Person wurde die Bahncard in der App angezeigt, in der Webseite jedoch nicht. Ein Versuch, die Daten der Karte per PIN zu übertragen scheiterte mit einer permanenten Fehlermeldung:

    “Ihr Konto konnte nicht übertragen werden. Bitte versuchen Sie es später noch einmal. “

  • Im Falle meiner Frau wurde die Bahncard weder in der App noch im Account auf der neuen Web-Site angezeigt. Auch bei ihr scheiterte der Versuch der Datenübertragung vom Bahnbonus-Account.

Das ist ärgerlich, wenn man die Bonuspunkte für eine geplante Reise verwenden will.

Lösung
Die nicht zugelassene Datenübernahme war in unserem Fall auf etwas unterschiedliche Schreibweisen der Namen zurückzuführen. Hier spielen einerseits Umlaute eine Rolle (die man in früheren Zeiten ggf. zur Erzielung einer Konsistenz mit Daten auf anderen Karten) ausgeschrieben hat (z.B. “ue” statt “ü”). Zu beachten sind auch Umlaute anderer Sprachen als Deutsch. Von Bedeutung ist ferner die Anzahl der angegebenen Vornamen. Das kann man als User nur schwer bereinigen, da unklar ist, welcher Account die führenden Angaben enthält. Ich bin mir im nachhinein auch nicht sicher, ob nach der Umstellung ein separater Login in den Bahnbonus-Account überhaupt noch möglich war.

Geholfen hat uns schließlich eine sehr freundliche Dame des telefonischen Bahnbonus-Services. Tel.-Nummer: 0049 (0)30 2970. Man kommt da mit relativ kurzer Wartezeit durch. Sie konnte die Bahnbonus-Konten und zugehörige Informationen mit dem Bahnkunden-Konto zusammenfügen. Zumindest die Bahnbonus-Punkte tauchen nun ordnungsgemäß auf. In der Smartphone-Apps erscheinen inzwischen auch die Bahncards. Allerdings noch nicht im Bahnkunden-Konto, wenn dies über die neue Webseite im Browser aufgerufen wird.

Diesbzgl. wurden wir auf evtl. folgende Updates der Seiten vertröstet. “Das könne etwas dauern …”. Na ja ….

Bewertung
Bei der Umstellung der Systeme hätten die Entwickler die bisherigen Account-Verknüpfungen von Bahn- und Bahnbonus-Kunden analysieren können und müssen. Die Zuordnung funktionierte ja in der Vergangenheit einwandfrei. Problematische Datensätze hätten vor dem Go Live bewertet und ggf. konsolidiert werden müssen. Zur Not unter Nutzung der Betroffenen. Zumindest Hinweise im Internet wären notwendig gewesen. Generell stellt sich die Frage, wieso man in der Vergangenheit überhaupt mit so vielen verteilten Datensätzen bei der Bahn und Sub-Gesellschaften gearbeitet hat. Bahnkunde, Bahnbonus-Kunde, Bahnkartenbesitzer, …. Seufz.

So, wie sich die Umstellung der Webseiten und die misslungene Zusammenführung der Daten bei der Ban und ihren Sub-Gesellschaften präsentierte, hinterließ das bei uns als regelmäßigen Bahnkunden jedenfalls einen schlechten Eindruck.

 

Neue bahn.de-Seite erfordert vollständige Bereinigung von Cookies und des Cache

Heute früh wollte ich am Linux-PC eine Reise mit der Bahn planen. Dazu rief ich die Seite im Firefox auf. Leider wurde die Bahn-Seite nicht vollständig geladen. Ein Arbeiten war nicht möglich. Das Gleiche unter Chromium und Opera.

Ein Login war zwar möglich, aber auch die dann folgende Seite erlaubte keinerlei Aktion.

Unter Chromium zeigte sich, dass eine Web-Ressource wegen fehlender Autorisierung nicht ansprechbar war.

Neue Web-Präsenz der Bahn

Anfang letzte Woche funktionierte noch alles. Das aktuelle Layout der nur teilweise anzeigten Seite kam mir auch seltsam vor. Eine kurze Suche im Internet zeigte, dass die Bahn ihre Web-Präsenz vollständig hat neu entwickeln lassen. Die neue Web-Präsenz ging zwischenzeitlich live. Neugierig geworden probierte ich einen Aufruf auf einem Win10-System. Identische Probleme unter Chrome und Opera wie unter Linux. Im dortigen Firefox lief die Bahn-Seite aber unter Windows.

Lösung

Durch das Verhalten von Firefox auf dem Win10-Laptop neugierig geworden experimentierte ich ein wenig herum. Am Schluss war die Lösung einfach:

Man muss Cookies und Website-Daten (für bahn.de) sowie alle entsprechenden Daten im Cache der Browser löschen. Und zwar vollständig. Dies erfordert bei Chrome, Chromium und Opera auch eine Einstellung des Zeitraums für den die Löschung vorgenommen werden soll.

Vermutlich ruft die neue Web-Präsenz alte Cookies/Website-Infos (mit falschen Autorisierungsdaten für bestimmte Web-Ressourcen) auf. Das hätten die Entwickler nach meinem Gefühl bei Tests erkennen und abfangen können. Ein Hinweis an neue Benutzer wäre hilfreich. (Der FF unter Win10 war so eingestellt, dass bei dessen Schließung Cache und Cookies automatisch beseitigt wurden. Deswegen tauchte das Problem dort nicht auf.)

Sonstige Nachteile der neuen Bahnpräsenz

Das Handling und die Performance der neuen Anwendung lassen im Vergleich zur alten Website zu wünschen übrig. Siehe hierzu
https://travel-dealz.de/news/bahn-neue-website-2023/

Man fragt sich auch, wieso eine Integration der Abo-Verwaltung ohne zweifachen Login nicht möglich war.