A simple Python program for an ANN to cover the MNIST dataset – IX – First Tests

This brief article continues my series on a Python program for simple MLPs.

A simple program for an ANN to cover the Mnist dataset – VIII – coding Error Backward Propagation
A simple program for an ANN to cover the Mnist dataset – VII – EBP related topics and obstacles
A simple program for an ANN to cover the Mnist dataset – VI – the math behind the „error back-propagation“
A simple program for an ANN to cover the Mnist dataset – V – coding the loss function
A simple program for an ANN to cover the Mnist dataset – IV – the concept of a cost or loss function
A simple program for an ANN to cover the Mnist dataset – III – forward propagation
A simple program for an ANN to cover the Mnist dataset – II – initial random weight values
A simple program for an ANN to cover the Mnist dataset – I – a starting point

With the code for “Error Backward Propagation” we have come so far that we can perform first tests. As planned from the beginning we take the MNIST dataset as a test example. In a first approach we do not rebuild the mini-batches with each epoch. Neither do we vary the MLP setup.

What we are interested in is the question whether our artificial neural network converges with respect to final weight values during training. I.e. we want to see whether the training algorithm finds a reasonable global minimum on the cost hyperplane over the parameter space of all weights.

Test results

We use the following parameters

    ANN = myann.MyANN(my_data_set="mnist_keras", n_hidden_layers = 2, 
                 ay_nodes_layers = [0, 70, 30, 0], 
                 n_nodes_layer_out = 10,  

                 #my_loss_function = "MSE",
                 my_loss_function = "LogLoss",
                 n_size_mini_batch = 500,
     
                 n_epochs = 1500, 
                 n_max_batches = 2000,
                     
                 lambda2_reg = 0.1, 
                 lambda1_reg = 0.0,      

                 vect_mode = 'cols', 
                      
                 learn_rate = 0.0001,
                 decrease_const = 0.000001,
                 mom_rate   = 0.00005,  

                 figs_x1=12.0, figs_x2=8.0, 
                 legend_loc='upper right',
                 b_print_test_data = True
                 )

We use two hidden layers with 70 and 30 nodes. Note that we pick a rather small learning rate, which gets diminished even further. The number of epochs (1500) is quite high; with 4 CPU threads on an i7-6700K processor training takes around 40 minutes if started from a Jupyter notebook. (Our program is not yet optimized.)

I supplemented my code with some statements to print out data for the total costs and the averaged error for mini-batches. We get the
following series of data for the last mini-batch within every 50th epoch.

Starting epoch 1
total costs of mini_batch =  1757.1499806500506
avg total error of mini_batch =  0.17150838451718683
---------
Starting epoch 51
total costs of mini_batch =  532.5817607913532
avg total error of mini_batch =  0.034658195573307196
---------
Starting epoch 101
total costs of mini_batch =  436.67115522484687
avg total error of mini_batch =  0.023496458964699055
---------
Starting epoch 151
total costs of mini_batch =  402.381331415108
avg total error of mini_batch =  0.020836159866695597
---------
Starting epoch 201
total costs of mini_batch =  342.6296325512483
avg total error of mini_batch =  0.016565121882126693
---------
Starting epoch 251
total costs of mini_batch =  319.5995117831668
avg total error of mini_batch =  0.01533372596379799
---------
Starting epoch 301
total costs of mini_batch =  288.2201307002896
avg total error of mini_batch =  0.013799141451102469
---------
Starting epoch 351
total costs of mini_batch =  272.40526022720826
avg total error of mini_batch =  0.013499221607285198
---------
Starting epoch 401
total costs of mini_batch =  251.02417188663628
avg total error of mini_batch =  0.012696943309314687
---------
Starting epoch 451
total costs of mini_batch =  231.92274565746214
avg total error of mini_batch =  0.011152542115360705
---------
Starting epoch 501
total costs of mini_batch =  216.34658280101385
avg total error of mini_batch =  0.010692239864121407
---------
Starting epoch 551
total costs of mini_batch =  215.21791509166042
avg total error of mini_batch =  0.010999255316821901
---------
Starting epoch 601
total costs of mini_batch =  207.79645393570436
avg total error of mini_batch =  0.011123079894527222
---------
Starting epoch 651
total costs of mini_batch =  188.33965068903723
avg total error of mini_batch =  0.009868734062493835
---------
Starting epoch 701
total costs of mini_batch =  173.07625091642274
avg total error of mini_batch =  0.008942065167336382
---------
Starting epoch 751
total costs of mini_batch =  174.98264336120369
avg total error of mini_batch =  0.009714870291761567
---------
Starting epoch 801
total costs of mini_batch =  161.10229359519792
avg total error of mini_batch =  0.008844419847237179
---------
Starting epoch 851
total costs of mini_batch =  155.4186141788981
avg total error of mini_batch =  0.008244783820578621
---------
Starting epoch 901
total costs of mini_batch =  158.88876607392308
avg total error of mini_batch =  0.008970678691005138
---------
Starting epoch 951
total costs of mini_batch =  148.61870772570722
avg total error of mini_batch =  0.008124438423034456
---------
Starting epoch 1001
total costs of mini_batch =  152.16976618516264
avg total error of mini_batch =  0.009151413825781066
---------
Starting epoch 1051
total costs of mini_batch =  142.24802525081637
avg total error of mini_batch =  0.008297161160449798
---------
Starting epoch 1101
total costs of mini_batch =  137.3828515603569
avg total error of mini_batch =  0.007659755348989629
---------
Starting epoch 1151
total costs of mini_batch =  129.8472897084494
avg total error of mini_batch =  0.007254892176613871
---------
Starting epoch 1201
total costs of mini_batch =  139.30002497623792
avg total error of mini_batch =  0.007881199505625214
---------
Starting epoch 1251
total costs of mini_batch =  138.0323454321882
avg total error of mini_batch =  0.00807373439996105
---------
Starting epoch 1301
total costs of mini_batch =  117.95701570484076
avg total error of mini_batch =  0.006378071703153664
---------
Starting epoch 1351
total costs of mini_batch =  125.
71869046937177
avg total error of mini_batch =  0.0072716189968114265
---------
Starting epoch 1401
total costs of mini_batch =  117.3485602627176
avg total error of mini_batch =  0.006291182169676069
---------
Starting epoch 1451
total costs of mini_batch =  118.09317470010767
avg total error of mini_batch =  0.0066519021636054195
---------
Starting epoch 1491
total costs of mini_batch =  112.69566736699439
avg total error of mini_batch =  0.006151660466611035

 ------
Total training Time_CPU:  2430.0504785089997

 
We can display the results also graphically; a code fragemnt to do this, may look like follows in a Jupyter cell:

# Plotting 
# **********
num_epochs  = ANN._ay_costs.shape[0]
num_batches = ANN._ay_costs.shape[1]
num_tot = num_epochs * num_batches

ANN._ay_costs = ANN._ay_costs.reshape(num_tot)
ANN._ay_theta = ANN._ay_theta .reshape(num_tot)

#sizing
fig_size = plt.rcParams["figure.figsize"]
fig_size[0] = 12
fig_size[1] = 5

# Two figures 
# -----------
fig1 = plt.figure(1)
fig2 = plt.figure(2)

# first figure with two plot-areas with axes 
# --------------------------------------------
ax1_1 = fig1.add_subplot(121)
ax1_2 = fig1.add_subplot(122)

ax1_1.plot(range(len(ANN._ay_costs)), ANN._ay_costs)
ax1_1.set_xlim (0, num_tot+5)
ax1_1.set_ylim (0, 2000)
ax1_1.set_xlabel("epochs * batches (" + str(num_epochs) + " * " + str(num_batches) + " )")
ax1_1.set_ylabel("costs")

ax1_2.plot(range(len(ANN._ay_theta)), ANN._ay_theta)
ax1_2.set_xlim (0, num_tot+5)
ax1_2.set_ylim (0, 0.2)
ax1_2.set_xlabel("epochs * batches (" + str(num_epochs) + " * " + str(num_batches) + " )")
ax1_2.set_ylabel("averaged error")

 

We get:

This looks quite promising!
The vertical spread of both curves is due to the fact that we plotted cost and error data for each mini-batch. As we know the cost hyperplanes of the batches differ from each other and the hyperplane of the total costs for all training data. So do the cost and error values.

Secondary test: Rate of correctly and wrongly predicted values of the training and the test data sets

With the following code in a Jupyter cell we can check the relative percentage of correctly predicted MNIST numbers for the training data set and the test data set:

# ------ all training data 
# *************************
size_set = ANN._X_train.shape[0]

li_Z_in_layer_test  = [None] * ANN._n_total_layers
li_Z_in_layer_test[0] = ANN._X_train
# Transpose 
ay_Z_in_0T       = li_Z_in_layer_test[0].T
li_Z_in_layer_test[0] = ay_Z_in_0T
li_A_out_layer_test  = [None] * ANN._n_total_layers

ANN._fw_propagation(li_Z_in = li_Z_in_layer_test, li_A_out = li_A_out_layer_test, b_print = True) 
Result = np.argmax(li_A_out_layer_test[3], axis=0)
Error = ANN._y_train - Result 
acc_train = (np.sum(Error == 0)) / size_set
print ("total accuracy for training data = ", acc_train)

# ------ all test data 
# *************************
size_set = ANN._X_test.shape[0]

li_Z_in_layer_test  = [None] * ANN._n_total_layers
li_Z_in_layer_test[0] = ANN._X_test
# Transpose 
ay_Z_in_0T       = li_Z_in_layer_test[0].T
li_Z_in_layer_test[0] = ay_Z_in_0T
li_A_out_layer_test  = [None] * ANN._n_total_layers

ANN._fw_propagation(li_Z_in = li_Z_in_layer_test, li_A_out = li_A_out_layer_test, b_print = True) 
Result = np.argmax(li_A_out_layer_
test[3], axis=0)
Error = ANN._y_test - Result 
acc_test = (np.sum(Error == 0)) / size_set
print ("total accuracy for test data = ", acc_test)

 

“acc” stands for “accuracy”.

We get

total accuracy for training data = 0.9919
total accuracy for test data        = 0.9645

So, there is some overfitting – but not much.

Conclusion

Our training algorithm and the error backward propagation seem to work.

The real question is, whether we produced the accuracy values really efficiently: In our example case we needed to fix around 786*70 + 70*30 + 30*10 = 57420 weight values. This is close to the total amount of training data (60000). A smaller network with just one hidden layer would require much fewer values – and the training would be much faster regarding CPU time.

So, in the next article
A simple program for an ANN to cover the Mnist dataset – X – mini-batch-shuffling and some more tests
we shall extend our tests to different setups of the MLP.

A simple Python program for an ANN to cover the MNIST dataset – II – initial random weight values

In this article series we are going to build a relatively simple Python class for the simulation of a “Multilayer Perceptron” [MLP]. A MLP is a simple form of an “artificial neural network” [ANN] with multiple layers of neurons. It has three characteristic properties: (1) Only connections between nodes of neighboring layers are allowed. (2) Information transport occurs in one forward direction. We speak of a “forward propagation of input information” through the ANN. (3) Neighboring layers are densely connected; a node of layer L_n is connected to all nodes of layer L_(n+1).

The firsts two points mean simplifications: According to (1) we do not consider so called cascaded networks. According to (2) no loops occur in the information transport. The third point, however, implies a lot of mathematical operations – not only during forward propagation of information through the ANN, but also – as we shall see – during the training and optimization of the network where we will back propagate “errors” from the output to the input layers. But for the next articles we need to care about simpler things first.

We shall use our MLP for classification tasks. Our first objective is to apply it to the MNIST dataset. In my last article

A simple program for an ANN to cover the Mnist dataset – I – a starting point

I presented already some code for the “__init__”-function on some other methods of our Python class. It enabled us to import MNIST data and split them in to a set of training and a set of test samples. Note that this is a standard approach in Machine Learning: You train on one set of data samples, but you test the classification or regression abilities of your ANN on a separate disjunctive data set.

In the present article we shall extend the functionality of our class: First we shall equip our network layers with a defined number of nodes. Then we shall provide statistical initial values for the “weights” describing the forward transport of information along the connections between the layers of our network.

Present status of our function “__init__”

The present status of our __init__function is:

    def __init__(self, 
                 my_data_set = "mnist", 
                 n_hidden_layers = 1, 
                 ay_nodes_layers = [0, 100, 0], # array which should have as much elements as n_hidden + 2
                 n_nodes_layer_out = 10,  # expected number of nodes in output layer 
                                                  
                 my_activation_function = "sigmoid", 
                 my_out_function        = "sigmoid",   
                 
                 n_mini_batch = 1000,  # number of data elements in a mini-batch 
                 
                 vect_mode = 'cols', 
                 
                 figs_x1=12.0, figs_x2=8.0, 
                 legend_loc='upper right',
                 
                 b_print_test_data = True
                 
                 ):
        '''
        Initialization of MyANN
        Input: 
            data_set: type of dataset; so far only the "mnist", "mnist_784" datsets are known 
                      We use this information to prepare the input data and learn about the feature dimension. 
                      This info is used in preparing the size of the input layer.     
            n_hidden_layers = number of hidden layers => between input layer 0 and output layer n 

            ay_nodes_layers = [0, 100, 0 ] : We set the number of nodes in input layer_0 and the output_layer to zero 
                              Will be set to real number afterwards by infos from the input dataset. 
       
                       All other numbers are used for the node numbers of the hidden layers.
            n_nodes_out_layer = expected number of nodes in the output layer (is checked); 
                                this number corresponds to the number of categories NC = number of labels to be distinguished
            
            my_activation_function : name of the activation function to use 
            my_out_function : name of the "activation" function of the last layer which produces the output values 
            
            n_mini_batch : Number of elements/samples in a mini-batch of training dtaa 
            
            vect_mode: Are 1-dim data arrays (vctors) ordered by columns or rows ?

            figs_x1=12.0, figs_x2=8.0 : Standard sizing of plots , 
            legend_loc='upper right': Position of legends in the plots
            
            b_print_test_data: Boolean variable to control the print out of some tests data 
             
         '''
        
        # Array (Python list) of known input data sets 
        self._input_data_sets = ["mnist", "mnist_784", "mnist_keras"]  
        self._my_data_set = my_data_set
        
        # X, y, X_train, y_train, X_test, y_test  
            # will be set by analyze_input_data 
            # X: Input array (2D) - at present status of MNIST image data, only.    
            # y: result (=classification data) [digits represent categories in the case of Mnist]
        self._X       = None 
        self._X_train = None 
        self._X_test  = None   
        self._y       = None 
        self._y_train = None 
        self._y_test  = None
        
        # relevant dimensions 
        # from input data information;  will be set in handle_input_data()
        self._dim_sets     = 0  
        self._dim_features = 0  
        self._n_labels     = 0   # number of unique labels - will be extracted from y-data 
        
        # Img sizes 
        self._dim_img      = 0 # should be sqrt(dim_features) - we assume square like images  
        self._img_h        = 0 
        self._img_w        = 0 
        
        # Layers
        # ------
        # number of hidden layers 
        self._n_hidden_layers = n_hidden_layers
        # Number of total layers 
        self._n_total_layers = 2 + self._n_hidden_layers  
        # Nodes for hidden layers 
        self._ay_nodes_layers = np.array(ay_nodes_layers)
        # Number of nodes in output layer - will be checked against information from target arrays
        self._n_nodes_layer_out = n_nodes_layer_out
        
        
        # Weights 
        # --------
        # empty List for all weight-matrices for all layer-connections
        # Numbering : 
        # w[0] contains the weight matrix which connects layer 0 (input layer ) to hidden layer 1 
        # w[1] contains the weight matrix which connects layer 1 (input layer ) to (hidden?) layer 2 
        self._ay_w = []  
        
        # Known Randomizer methods ( 0: np.random.randint, 1: np.random.uniform )  
        # ------------------
        self.__ay_known_randomizers = [0, 1]

        # Types of activation functions and output functions 
        # ------------------
        self.__ay_activation_functions = ["sigmoid"] # later also relu 
        self.__ay_output_functions     = ["sigmoid"] # later also softmax 
        
        # the following dictionaries will be used for indirect function calls 
        self.__d_activation_funcs = {
            'sigmoid': self._sigmoid, 
            'relu':    self._relu
            }
        self.__d_output_funcs = { 
            'sigmoid': self._sigmoid, 
            'softmax': self._softmax
            }  
          
        # The following variables will later be set by _check_and set_activation_and_out_functions()            
        
self._my_act_func = my_activation_function
        self._my_out_func = my_out_function
        self._act_func = None    
        self._out_func = None    

        # number of data samples in a mini-batch 
        self._n_mini_batch = n_mini_batch


        # print some test data 
        self._b_print_test_data = b_print_test_data

        # Plot handling 
        # --------------
        # Alternatives to resize plots 
        # 1: just resize figure  2: resize plus create subplots() [figure + axes] 
        self._plot_resize_alternative = 1 
        # Plot-sizing
        self._figs_x1 = figs_x1
        self._figs_x2 = figs_x2
        self._fig = None
        self._ax  = None 
        # alternative 2 does resizing and (!) subplots() 
        self.initiate_and_resize_plot(self._plot_resize_alternative)        
        
        
        # ***********
        # operations 
        # ***********
        # check and handle input data 
        self._handle_input_data()
        
        print("\nStopping program regularily")
        sys.exit()

 
The kind reader may have noticed that this is not exactly what was presented in the last article. I have introduced two additional parameters and corresponding class attributes:
“b_print_test_data” and “n_mini_batch”.

The first of these parameters controls whether we print out some test data or not. The second parameter controls the number of test samples dealt with in parallel during propagation and optimization via the so called “mini-batch-approach” mentioned in the last article.

Setting node numbers of the layers

We said in the last article that we would provide the numbers of nodes of the ANN layers via a parameter list “ay_nodes_layers”. We set the number of nodes for the input and the output layer, i.e. the first number and the last number in the list, to “0” in this array because these numbers are determined by properties of the input data set – here the MNIST dataset.

All other numbers in the array determine the amount of nodes of the hidden layers in consecutive order between the input and the output layer. So, the number at ay_nodes_layers[1] is the number of nodes in the first hidden layer, i.e. the layer which follows after the input layer.

In the last article we have understood already that the number of nodes in the input layer should be equal to the full number of “features” of our input data set – 784 in our case. The number of nodes of the output layer must instead be determined from the number of categories in our data set. This is equivalent to the number of distinct labels in the set of training data represented by an array “_y_train” (in case of MNIST: 10).

We provide three methods to check the node numbers defined by the user, set the node numbers for the input and output layers and print the numbers.

    # Method which checks the number of nodes given for hidden layers 
    def _check_layer_and_node_numbers(self): 
        try: 
            if (self._n_total_layers != (self._n_hidden_layers + 2)): 
                raise ValueError
        except ValueError:
            print("The assumed total number of layers does not fit the number of hidden layers + 2") 
            sys.exit()   
        try: 
            if (len(self._ay_nodes_layers) != (self._n_hidden_layers + 2)): 
                raise ValueError
        except ValueError:
            print("The number of elements in the array for layer-nodes does not fit the number of hidden layers + 2") 
            sys.exit(1)   
    
    # Method which sets the number of nodes of the input and the layer 
    def _set_nodes_for_input_output_layers(self): 
        
        # Input layer: for the input layer we do 
NOT take into account a bias node 
        self._ay_nodes_layers[0] = self._dim_features 
                
        # Output layer: for the output layer we check the number of unique values in y_train
        try: 
            if ( self._n_labels != (self._n_nodes_layer_out) ): 
                raise ValueError
        except ValueError:
            print("The unique elements in target-array do not fit number of nodes in the output layer") 
            sys.exit(1)   
        self._ay_nodes_layers[self._n_total_layers - 1] = self._n_labels     


    # Method which prints the number of nodes of all layers 
    def _show_node_numbers(self): 
        print("\nThe node numbers for the " + str(self._n_total_layers) + " layers are : ")
        print(self._ay_nodes_layers)

 
The code should be easy to understand. self._dim_features was set in the method “_common_handling_of mnist()” discussed in the last article. It was derived from the shape of the input data array _X_train. The number of unique labels was evaluated by the method “_get_num_labels()” – also discussed in the last article.

Note: The initial node numbers DO NOT include a bias node, yet.

If we extend the final commands in the “__init__”-function by :

        # ***********
        # operations 
        # ***********
        # check and handle input data 
        self._handle_input_data()

        # check consistency of the node-number list with the number of hidden layers (n_hidden)
        self._check_layer_and_node_numbers()
        # set node numbers for the input layer and the output layer
        self._set_nodes_for_input_output_layers() 
        self._show_node_numbers() 
        
        print("\nStopping program regularily")
        sys.exit()

 

By testing our additional code in a Jupyter notebook we get a corresponding output for

ANN = myann.MyANN(my_data_set="mnist_keras", n_hidden_layers = 2, 
                     ay_nodes_layers = [0, 100, 50, 0], 
                     n_nodes_layer_out = 10,  
                     vect_mode = 'cols', 
                     figs_x1=12.0, figs_x2=8.0, 
                     legend_loc='upper right',
                     b_print_test_data = False
                     )

of:

The node numbers for the 4 defined layers are: 
[784 100  50  10]

Good!

Setting initial random numbers for the weights

Initial values for the ANN weights have to be given as matrices, i.e. 2-dim arrays. However, the randomizer functions provided by Numpy give you vectors as output. So, we need to reshape such vectors into the required form.

First we define a method to provide random floating point and integer numbers:

 
    # ---
    # method to create an array of randomized values
    def _create_vector_with_random_values(self, r_low=None, r_high=None, r_size=None, randomizer=0 ):   
        '''
        Method to create a vector of length "r_size" with "random values" in [r_low, r_high] 
        generated by method "randomizer" 
        Input: 
        ramdonizer : integer which sets randomizer method; presently only 
            0: np.random.uniform 
            1: np.randint     
        [r_low, r_high]: range of the random numbers to be created
        r_size: Size of output array 
        Output: A 1-dim numpy array of length rand-size - produced as a class member 
        '''
        # check parameters
        try: 
            if (r_low==None or r_high == None or r_size == None ): 
                raise ValueError
        except ValueError:
            print("One of 
the required parameters r_low, r_high, r_size has not been set") 
            sys.exit(1)   
        
        rmizer = int(randomizer)
        try: 
            if (rmizer not in self.__ay_known_randomizers): 
                raise ValueError
        except ValueError:
            print("randomizer not known") 
            sys.exit(1)   
        
        # 2 randomizers (so far)
        if (rmizer == 0): 
            ay_r_out = np.random.randint(int(r_low), int(r_high), int(r_size))
        if (rmizer == 1):
            ay_r_out = np.random.uniform(r_low, r_high, size=int(r_size))
            
        return ay_r_out     

 
Presently, we can only use two randomizer functions to be used – numpy.random.randint and numpy.random.uniform. The first one provides random integer values, the other one floating point values – both within a defined interval. The parameter “r_size” defines how many random numbers shall be created and put into an array. The code requires no further explanation.

Now, we define two methods to create the weight matrices for the connections

  • between the input layer L0 to the first hidden layer,
  • between further hidden layers and eventually between the last hidden layer and the output layer

As we allow for all possible connections between nodes the dimensions of the matrices are determined by the numbers of nodes in the connected neighboring layers. Each node of a layer L_n cam be connected to each node of layer L_(n+1). Our methods are:

 
    # Method to create the weight matrix between L0/L1
    # ------
    def _create_WM_Input(self):
        '''
        Method to create the input layer 
        The dimension will be taken from the structure of the input data 
        We need to fill self._w[0] with a matrix for conections of all nodes in L0 with all nodes in L1
        We fill the matrix with random numbers between [-1, 1] 
        '''
        # the num_nodes of layer 0 should already include the bias node 
        num_nodes_layer_0 = self._ay_nodes_layers[0]
        num_nodes_with_bias_layer_0 = num_nodes_layer_0 + 1 
        num_nodes_layer_1 = self._ay_nodes_layers[1] 
        
        # fill the matrix with random values 
        rand_low  = -1.0
        rand_high = 1.0
        rand_size = num_nodes_layer_1 * (num_nodes_with_bias_layer_0) 
        
        randomizer = 1 # method np.random.uniform   
        
        w0 = self._create_vector_with_random_values(rand_low, rand_high, rand_size, randomizer)
        w0 = w0.reshape(num_nodes_layer_1, num_nodes_with_bias_layer_0)
        
        # put the weight matrix into array of matrices 
        self._ay_w.append(w0.copy())
        print("\nShape of weight matrix between layers 0 and 1 " + str(self._ay_w[0].shape))


        
    # Method to create the weight-matrices for hidden layers 
    def _create_WM_Hidden(self):
        '''
        Method to create the weights of the hidden layers, i.e. between [L1, L2] and so on ... [L_n, L_out] 
        We fill the matrix with random numbers between [-1, 1] 
        '''
        
        # The "+1" is required due to range properties ! 
        rg_hidden_layers = range(1, self._n_hidden_layers + 1, 1)

        # for random operation 
        rand_low  = -1.0
        rand_high = 1.0
        
        for i in rg_hidden_layers: 
            print ("Creating weight matrix for layer " + str(i) + " to layer " + str(i+1) )
            
            num_nodes_layer = self._ay_nodes_layers[i] 
            num_nodes_with_bias_layer = num_nodes_layer + 1 
            
            # the number of the next layer is taken without the bias node!
            num_nodes_layer_
next = self._ay_nodes_layers[i+1]
            
            # assign random values  
            rand_size = num_nodes_layer_next * num_nodes_with_bias_layer   
            
            randomizer = 1 # np.random.uniform
            
            w_i_next = self._create_vector_with_random_values(rand_low, rand_high, rand_size, randomizer)   
            w_i_next = w_i_next.reshape(num_nodes_layer_next, num_nodes_with_bias_layer)
            
            # put the weight matrix into our array of matrices 
            self._ay_w.append(w_i_next.copy())
            print("Shape of weight matrix between layers " + str(i) + " and " + str(i+1) + " = " + str(self._ay_w[i].shape))

 
Three things may need explanation:

  • The first thing is the inclusion of a bias-node in all layers. A bias node only provides input to the next layer but does not receive input from a preceding layer. It gives an additional bias to the input a layer provides to a neighbor layer. (Actually, it provides an additional degree of freedom for the optimization process.) So, we include connections from a bias-node of a layer L_n to all nodes (without the bias-node) in layer L_(n+1).
  • The second thing is the reshaping of the vector of random numbers into a matrix. Of course, the dimension of the vector of random numbers must fit the product of the 2 matrix dimensions. Note that the first dimension always corresponds to number of nodes in layer L_(n+1) and the second dimension to the number of nodes in layer L_n (including the bias-node)!
    We need this special form to support the vectorized propagation properly later on.
  • The third thing is that we save our (Numpy) weight matrices as elements of a Python list.

In my opinion this makes the access to these matrices flexible and easy in the case of multiple hidden layers.

Setting the activation and output functions

We must set the activation and the output function. This is handled by a method “_check_and_set_activation_and_out_functions()”.

 
    def _check_and_set_activation_and_out_functions(self):
        # check for known activation function 
        try: 
            if (self._my_act_func not in self.__d_activation_funcs ): 
                raise ValueError
        except ValueError:
            print("The requested activation function " + self._my_act_func + " is not known!" )
            sys.exit()   
        # check for known output function 
        try: 
            if (self._my_out_func not in self.__d_output_funcs ): 
                raise ValueError
        except ValueError:
            print("The requested output function " + self._my_out_func + " is not known!" )
            sys.exit()   
             
        # set the function to variables for indirect addressing 
        self._act_func = self.__d_activation_funcs[self._my_act_func]
        self._out_func = self.__d_output_funcs[self._my_out_func]
        
        if self._b_print_test_data:
            z = 7.0
            print("\nThe activation function of the standard neurons was defined as \""  + self._my_act_func + '"') 
            print("The activation function gives for z=7.0:  " + str(self._act_func(z))) 
            print("\nThe output function of the neurons in the output layer was defined as \"" + self._my_out_func + "\"") 
            print("The output function gives for z=7.0:  " + str(self._out_func(z))) 
        

 
It requires not much of an explanation. For the time being we just rely on the given definition of the “__init__”-interface, which sets both to “sigmoid()”. The internal dictionaries __d_activation_funcs[] and __d_output_funcs[] provide the functions to
internal variables (indirect addressing).

Some test output

A test output for the enhanced code

 
        # ***********
        # operations 
        # ***********
        # check and handle input data 
        self._handle_input_data()

        # check consistency of the node-number list with the number of hidden layers (n_hidden)
        self._check_layer_and_node_numbers()
        # set node numbers for the input layer and the output layer
        self._set_nodes_for_input_output_layers() 
        self._show_node_numbers() 

        # create the weight matrix between input and first hidden layer 
        self._create_WM_Input() 
        # create weight matrices between the hidden layers and between tha last hidden and the output layer 
        self._create_WM_Hidden() 

        # check and set activation functions 
        self._check_and_set_activation_and_out_functions()

        print("\nStopping program regularily")
        sys.exit()

 

and a Jupyter cell

gives :

The shapes of the weight matrices correspond correctly to the numbers of nodes in the 4 layers defined. (Do not forget about the bias-nodes!).

Conclusion

We have reached a status where our ANN class can read in the MNIST dataset and set initial random values for the weights. This means that we can start to do some more interesting things. In the next article

A simple program for an ANN to cover the Mnist dataset – III – forward propagation

we shall program the “forward propagation”. We shall perform the propagation for a mini-batch of many data samples in one step. We shall see that this is a very simple task, which only requires a few lines of code.

 

A simple Python program for an ANN to cover the MNIST dataset – I – a starting point

For beginners both in Python and Machine Learning [ML] the threshold to do some real programming and create your own Artificial Neural Network [ANN] seems to be relatively high. Well, some readers might say: Why program an ANN by yourself at a basic Python level at all when Keras and TensorFlow [TF] are available? Answer: For learning! And eventually to be able to do some things TF has not been made for. And as readers of this blog will see in the future, I have some ideas along this line …

So I thought, just let me set up a small Python3 and Numpy based program to create a simple kind of ANN – a “Multilayer Perceptron” [MLP] – and train it for the MNIST dataset. I expected that my readers and I myself would earn something on various methods used in ML during our numerical experiments. Well, we shall see ..-

Regarding ANN-theory I take a brutal shortcut and assume that my readers are already acquainted with the following topics:

  1. what simple neural networks with “hidden” layers look like and what its weights are,
  2. what a “cost function” is and how the gradient descent method works,
  3. what logistic regression is and what the cost function J for it looks like,
  4. why we need the back propagation of deviations from known values and why it gives you the required partial derivatives of a typical cost function with respect to an ANN’s “weights”,
  5. what a mini-batch approach to weight optimization is.

I cannot spare you the effort of studying most of these topics in advance. Otherwise I would have to write an introductory book on ML myself. [I would do, but you need to give me a sponsor 🙂 ] But even if you are not fully acquainted with all the named topics: I shall briefly comment on each and every of the points in the forthcoming articles. The real basics are, however, much better and more precisely documented in the literature; e.g. in the books of Geron and Rashka (see the references at the end of this article). I recommend to read one of these books whilst we move on with a sequence of steps to build the basic code for our MLP.

We need a relatively well defined first objective for the usage of our ANN. We shall concentrate on classification tasks. As a first example we shall use the conventional MNIST data set. The MNIST data set consists of images of handwritten numbers with 28×28 pixels [px]. It is a standard data set used in many elementary courses on ML. The challenge for our ANN is that it should be able to recognize hand-written digits from a digitized gray-color image after some training.

Note that this task does NOT require the use of a fully fletched multi-layer MLP. “Stochastic Gradient Descent”-approaches for a pure binary classificator to determine (linear) separation surfaces in combination with a “One-versus-All” strategy for multi-category-classification may be sufficient. See chapters 3 to 5 in the book of Geron for more information.

Regarding the build up of the ANN program, I basically follow an approach described by S. Raschka in his book (see the second to last section for a reference). However, at multiple points I take my freedom to organize the code differently and comment in my own way … I am only a beginner in Python; I hope my insights are helpful for others in the same situation.

In any case you should make yourself familiar with numpy arrays and their “shapes”. I assume that you understand the multidimensional structure of Numpy arrays ….

Wording

To avoid confusion, I use the following wording and synonyms:

Category: Each input data element is associated with a category to which it belongs. In our case a category
corresponds to a “digit”. The classification algorithm (here: the MLP) may achieve an ability to predict the association of an unknown MNIST like input data sample with its correct category. It should – after some training – detect the (non-linear) separation interfaces for categories in a multidimensional feature space. In the case of MNIST we speak about ten categories corresponding to 10 digits, including zero.

Label: A category may be described by a label. Training data may provide a so called “target label array” _y_train for all input data. We must be prepared to transform target labels for input data into a usable form for an ANN, i.e. into a vectorized form, which selects a specific category out of many. This process is called “label encoding”.

Input data set: A complete “set” of input data. Such a set consists of individual “elements” or “records“. Another term which we I shall frequently use for such an element is a “sample“. The MNIST input set of training data consists of 60000 records or samples – which we provide via an array _X_train. The array is two dimensional as each sample consists of values more multiple properties.

Feature: A sample of the input data set may be equivalent to a mathematical vector, whose elements specify (numerical) values for multiple properties – so called “features” – of a sample. Thus, input samples correspond to points in a multidimensional feature space.

Output data set: A complete set of output data after a so called “propagation” through the ANN for the input data set. “Propagation”means a series of defined mathematical transformations of the original features data of the input sample. The number of samples or records in the output data sets is equal to the number of records in the input data set. The output set will be represented by a Numpy array “_ay_ANN_out“.

A data record or sample of the input data set: One distinct element of the input data set (and its array). Note that such an element itself may be a multidimensional array covering all features in a distinct form. Such arrays represents a so called “tensor”.

A data record of the output data set: One distinct element of the output data set. Note that such an element itself may be an array covering all possible categories in a distinct form. E.g., we may be given a “probability” for each category – which allows us to decide with which of the categories we should associate the output element.

A simple MLP network – layers, nodes, weights

An AN network is composed of a series of horizontally and/or vertically arranged layers with nodes. The nodes represent the artificial neurons. A MLP is an ANN which has a rather simple structure: It consists of an input layer, multiple sequential intermediate “hidden” layers, and an output layer. All nodes of a specific layer are connected with all nodes of neighboring (!) layers, only. We speak of a “dense” or fully “connected layer” structure.

The simplifying sketch below displays an ANN with just three sequentially arranged layers – an input layer, a “hidden” middle layer and an output layer.

Note that in general there can be (many) more hidden layers than just one. Note also that modern ANNs (e.g. Convoluted Networks) may have a much more complicated topological structure with hundreds of layers. There may also be
cascaded networks where a specific layer has connections to many more than just the neighbor layers.

Input layer and its number of nodes
To feed input data into the MLP we need an “input layer” with sufficient input nodes. How many? Well, this depends on the number of features your data set represents. In the MNIST case a sample image contains 28×28 pixels. For each pixel with a gray value (integer number between 0 and 256) given. So a typical image represents 28×28 = 768 different “features” – i.e. 786 numbers for “gray”-values between 0 and 255. We need as many input nodes in our MLP to represent the full image information by the input layer.

For other input data the number of features may be different; in addition features my follow a multidimensional order or organization which first must be “flattened” out in one dimension. The number of input nodes must then be adjusted accordingly. The number of input nodes should, therefore, be a parameter or be derived from information on the type of input data. The way of how you map complicated and structured features to input layers and whether you map all data to a one dimensional input vector is a question one should think about carefully. (Most people today treat e.g. a time dimension of input data as just a special form of a feature – I regard this as questionable in some cases, but this is beyond this article series …)

For our MLP we always assume a mapping of features to a flat one dimensional vector like structure.

Output layer and its number of nodes
We shall use our MLP for classification tasks in the beginning. We, therefore, assume that the output of the ANN should allow for the distinction between “strong>NC” different categories an input data set can belong to. In case of the MNIST dataset we can distinguish between 10 different digits. Thus an output layer must in this case comprise 10 different nodes. To be able to cover other data sets with a different number of categories the number of output nodes must be a parameter of our program, too.

How we indicate the association of a (transformed) sample at the output layer to a category numerically – by a probability number between “0” and “1” or just a “1” at the right category and zeros otherwise – can be a matter of discussion. It is also a question of the cost function we wish to use. We will come back to this point in later articles.

The numbers of “hidden layers” and their nodes
We want the numbers of nodes on “hidden layers” to be parameters for our program. For simple data as MNIST images we do not need big networks, but we want to be able to play around a bit with 1 up to 3 layers. (For an ANN to recognize hand written MNIST digits an input layer “L0” and only one hidden layer “L1” before an output layer “L2” are fully sufficient. Nevertheless in most of our experiments we will actually use 2 hidden layers. There are three reasons: You can approximate any continuous function with two hidden layers (with a special non-linear activation function; see below) and an output layer (with just a linear output function). The other reason is that the full mathematical complexity of “learning” of a MLP appears with two hidden layers (see a later article).

Activation and output functions
The nodes in hidden layers use a so called “activation function” to transform aggregated input from different feeding nodes of the previous layer into one distinct value within a defined interval – e.g. between -1 and 1. Again, we should be prepared to have a program parameter to choose between different “activation functions”.

We should be aware of the fact that the nodes of the output layers need special consideration as the “activation function” there
produces the final output – which in turn must allow for a distinction of categories. This may lead to a special form – e.g. a kind of probability function. So, the type of the “output function” should also be regarded as variable parameter.

A Python class for our ANN and its interface

I develop my code as a Python module in an Eclipse/PyDev IDE, which itself uses a virtual Python3 environment. I described the setup of such a development environment in detail in another previous article of this blog. In the resulting directory structure of the PyDev project I place a module “myann.py” at the location “…../ml_1/mynotebooks/mycode/myann.py”. This file shall contain the code of class “MyANN” for our ANN.

Modules and libraries to import

We need to import some libraries at the head of our Python program first:

'''
Module to create a simple layered neural network for the MNIST data set
Created on 23.08.2019
@author: ramoe
'''
import numpy as np
import math 
import sys
import time
import tensorflow
from sklearn.datasets import fetch_mldata
from sklearn.datasets import fetch_openml
from keras.datasets import mnist as kmnist
from scipy.special import expit  
from matplotlib import pyplot as plt
#from matplotlib.colors import ListedColormap
#import matplotlib.patches as mpat 
#from keras.activations import relu

 

Why do I import “tensorflow” and “keras”?
Well, only for the purpose to create the input data of MNIST quickly. Sklearn’s “fetchml_data” is doomed to end. The alternative “fetch_openml” does not use caching in some older versions and is also in general terribly slow. But, “keras”, which in turn needs tensorflow as a backend, provides its own tool to provide the MNIST data.

We need “scipy” to get an optimized version of the so called “sigmoid“-function – which is an important version of an activation function. We shall use it most of the time. “numpy” and “math” are required for fast array- and math-operations. “time” is required to measure the run time of program segments and “mathplotlib” will help us to visualize some information gathered during and after training.

The “__init__”-function of our class MyANN

We encapsulate most of the required functionality in a class and its methods. Python provides the “__init__”-function, which we can use as a kind of “constructor” – although it technically is not the same as a constructor in other languages. Anyway, we can use it as an interface to feed in parameters and to initialize variables of a class instance.

We shall build up our “__init__()”-function during the next articles step by step. In the beginning we shall only focus on attributes and methods of our class required to import the MNIST data and put them into Numpy arrays and to create the basic network layers.

Parameters

class MyANN:
    def __init__(self, 
                 my_data_set = "mnist", 
                 n_hidden_layers = 1, 
                 ay_nodes_layers = [0, 100, 0], # array which should have as much elements as n_hidden + 2
                 n_nodes_layer_out = 10,  # number of nodes in output layer 
                 
                 my_activation_function = "sigmoid", 
                 my_out_function        = "sigmoid",   
                 
                 vect_mode = 'cols', 
                 
                 figs_x1=12.0, figs_x2=8.0, 
                 legend_loc='upper right'
                 )
:
        '''
        Initialization of MyANN
        Input: 
            data_set: type of dataset; so far only the "mnist", "mnist_784" and the "mnist_keras" datsets are known. 
                      We use this information to prepare the input data and learn about the feature dimension. 
                      This info is used in preparing the size of the input layer.     
            n_hidden_layers = number of hidden layers => between input layer 0 and output layer n 
            ay_nodes_layers = [0, 100, 0 ] : We set the number of nodes in input layer_0 and the output_layer to zero 
                                             Will be set to real number afterwards by infos from the input dataset. 
                                             All other numbers are used for the node numbers of the hidden layers.
            n_nodes_layer_out = expected number of nodes in the output layer (is checked); 
                                this number corresponds to the number of categories to be distinguished   
            
            my_activation_function : name of the activation function to use 
            my_out_function : name of the "activation" function of the last layer whcih produces the output values 
            
            vect_mode: Are 1-dim data arrays (vectors) ordered by columns or rows ?
            
            figs_x1=12.0, figs_x2=8.0 : Standard sizing of plots , 
            legend_loc='upper right': Position of legends in the plots 
            
         '''

 

You see that I defined multiple parameters, which are explained in the Python “doc”-string. We use a “string” to choose the dataset to train our ANN on. To be able to work on other data sets later on we assume that specific methods for importing a variety of special input data sets are implemented in our class. This requires that the class knows exactly which kinds of data sets it is capable to handle. We provide an list with this information below. The other parameters should be clear from their inline documentation.

Initialization of class attributes

We first initialize a bunch of class attributes which we shall use to define the network of layers, nodes, weights, to keep our input data and functions.

        # Array (Python list) of known input data sets 
        self.__input_data_sets = ["mnist", "mnist_784", "mnist_keras"]  
        self._my_data_set = my_data_set
        
        # X, y, X_train, y_train, X_test, y_test  
            # will be set by analyze_input_data 
            # X: Input array (2D) - at present status of MNIST image data, only.    
            # y: result (=classification data) [digits represent categories in the case of Mnist]
        self._X       = None 
        self._X_train = None 
        self._X_test  = None   
        self._y       = None 
        self._y_train = None 
        self._y_test  = None
        
        # relevant dimensions 
        # from input data information;  will be set in handle_input_data()
        self._dim_sets     = 0  
        self._dim_features = 0  
        self._n_labels     = 0   # number of unique labels - will be extracted from y-data 
        
        # Img sizes 
        self._dim_img      = 0 # should be sqrt(dim_features) - we assume square like images  
        self._img_h        = 0 
        self._img_w        = 0 
        
        # Layers
        # ------
        # number of hidden layers 
        self._n_hidden_layers = n_hidden_layers
        # Number of total layers 
        self._n_total_layers = 2 + self._n_hidden_layers  
        # Nodes for hidden layers 
        self._ay_nodes_layers = np.array(ay_nodes_layers)
        # Number of nodes in output layer - will be checked against information from 
target arrays
        self._n_nodes_layer_out = n_nodes_layer_out
        
        
        # Weights 
        # --------
        # empty List for all weight-matrices for all layer-connections
        # Numbering : 
        # w[0] contains the weight matrix which connects layer 0 (input layer ) to hidden layer 1 
        # w[1] contains the weight matrix which connects layer 1 (input layer ) to (hidden?) layer 2 
        self._ay_w = []  
        
        # Known Randomizer methods ( 0: np.random.randint, 1: np.random.uniform )  
        # ------------------
        self.__ay_known_randomizers = [0, 1]

        # Types of activation functions and output functions 
        # ------------------
        self.__ay_activation_functions = ["sigmoid"] # later also relu 
        self.__ay_output_functions     = ["sigmoid"] # later also softmax 
        
        # the following dictionaries will be used for indirect function calls 
        self.__d_activation_funcs = {
            'sigmoid': self._sigmoid, 
            'relu':    self._relu
            
            }
        self.__d_output_funcs = { 
            'sigmoid': self._sigmoid, 
            'softmax': self._softmax
            }    

        # The following variables will later be set by _check_and set_activation_and_out_functions()            
        self._my_act_func = my_activation_function
        self._my_out_func = my_out_function
        self._act_func = None    
        self._out_func = None    

        # Plot handling 
        # --------------
        # Alternatives to resize plots 
        # 1: just resize figure  2: resize plus create subplots() [figure + axes] 
        self._plot_resize_alternative = 1 
        # Plot-sizing
        self._figs_x1 = figs_x1
        self._figs_x2 = figs_x2
        self._fig = None
        self._ax  = None 
                # alternative 2 does resizing and (!) subplots() 
        self.initiate_and_resize_plot(self._plot_resize_alternative)  

        # ***********
        # operations 
        # ***********
        # check and handle input data 
        self._handle_input_data()
        
        print("\nStopping program regularily")
        sys.exit()
       

 
To make things not more complicated as necessary I omit the usage of “properties” and a full encapsulation of private attributes. For convenience reasons I use only one underscore for some attributes and functions/methods to allow for external usage. This is helpful in a testing phase. However, many items can in the end be switched to really private properties or methods.

List of known input datasets

The list of known input data sets is kept in the variable “self.__input_data_sets”. The variables

self._X, self._X_train, self._X_test, self._y, self._y_train, self._y_test

will be used to keep all sample data of the chosen dataset – i.e. the training data, the test data for checking of the reliability of the algorithm after training and the corresponding target data (y_…) for classification – in distinct array variables during code execution. The target data in the MNIST case contain the digit a specific sample image ( of _X_train or _X_test..) represents.

All of the named attributes will become Numpy arrays. A method called “_handle_input_data(self)” will load the (MNIST) input data and fill the arrays.

The input arrays “X_…” will via their dimensions provide the information on the number of data sets (_dim_sets) and the number of features (_dim_features). Numpy provides the various dimensions of multidimensional arrays in form of a tuple.

The target data arrays “_y_…” provides the number of “categories” (MNIST: 10 digits) the ANN must distinguish after training. We keep this number in the
attribute “_n_labels”. It is also useful to keep the pixel dimensions of input image data. At least for MNIST we assume quadratic images (_img_h = img_w = _dim_img).

Layers and weights

The number of total layers (“_n_total_layers”) is by 2 bigger than the number of hidden layers (_n_hidden_layers).

We take the number of nodes in the layers from the respective list provided as an input parameter “ay_nodes_layers” to our class. We transform the list into a numpy array “_ay_nodes_layers”. The expected number of nodes in the output layer is used for consistency checks and saved in the variable “_n_nodes_layer_out”.

The “weights” of an ANN must be given in form of matrices: A weight describes a connection between two nodes of different adjacent layers. So we have as many connections as there are node combinations (nodex_(N+1), nodey_N), with “nodex_N” meaning a node on layer L_N and nodey_(N+1) a node on layer L_(N+1).

As the number of layers is not fixed, but can be set by the user, I use a Python list “_ay_w” to collect such matrices in the order of layer_0 (input) to layer_n (output).

Weights, i.e. the matrix elements, must initially be set as random numbers. To provide such numbers we have to use randomizer functions. Depending on the kind (floating point numbers, integer numbers) of random numbers to produce we use at least two randomizers (randint, uniform). For the weights we use the uniform-randomizer.

Allowed activation and output function names are listed in Python dictionaries which point to respective methods. This allows for an “indirect addressing” of these functions later on. You may recognize this by the direct reference of the dictionary elements to defined class methods (no strings are used!).

For the time being we work with the “sigmoid” and the “relu” functions for activation and the “sigmoid” and “softmax” functions for output creation. The attributes “self._act_func” and “self._out_func” are used later on to invoke the functions requested by the respective parameters of the classes interface.

The final part of the code segment given above is used for plot-sizing with the help of “matplotlib”; a method “initiate_and_resize_plot()” takes care of this. It can use 2 alternative ways of doing so.

Read and provide the input data

Now let us turn to some methods. We first need to read in and prepare the input data. We use a method “_handle_input_data()” to work on this problem. For the time being we have only three different ways to load the MNIST dataset from different origins.

    # Method to handle different types of input data sets 
    def _handle_input_data(self):    
        '''
        Method to deal with the input data: 
        - check if we have a known data set ("mnist" so far)
        - reshape as required 
        - analyze dimensions and extract the feature dimension(s) 
        '''
        # check for known dataset 
        try: 
            if (self._my_data_set not in self._input_data_sets ): 
                raise ValueError
        except ValueError:
            print("The requested input data" + self._my_data_set + " is not known!" )
            sys.exit()   

        
        # handle the mnist original dataset 
        if ( self._my_data_set == "mnist"): 
            mnist = fetch_mldata('MNIST original')
            self._X, self._y = mnist["data"], mnist["target"]
            print("Input data for dataset " + self._my_data_set + " : \n" + "Original shape of X = " + str(self._X.shape) +
              "\n" + "Original shape of y = " + str(self._y.shape))
            self._X_train, self._X_test, self._y_train, self._y_test = self._X[:60000], self._X[60000:],
 self._y[:60000], self._y[60000:] 
            
        # handle the mnist_784 dataset 
        if ( self._my_data_set == "mnist_784"): 
            mnist2 = fetch_openml('mnist_784', version=1, cache=True, data_home='~/scikit_learn_data') 
            self._X, self._y = mnist2["data"], mnist2["target"]
            print ("data fetched")
            # the target categories are given as strings not integers 
            self._y = np.array([int(i) for i in self._y])
            print ("data modified")
            print("Input data for dataset " + self._my_data_set + " : \n" + "Original shape of X = " + str(self._X.shape) +
              "\n" + "Original shape of y = " + str(self._y.shape))
            self._X_train, self._X_test, self._y_train, self._y_test = self._X[:60000], self._X[60000:], self._y[:60000], self._y[60000:] 

        # handle the mnist_keras dataset 
        if ( self._my_data_set == "mnist_keras"): 
            (self._X_train, self._y_train), (self._X_test, self._y_test) = kmnist.load_data()
            len_train =  self._X_train.shape[0]
            #print(len_train)
            print("Input data for dataset " + self._my_data_set + " : \n" + "Original shape of X_train = " + str(self._X_train.shape) +
              "\n" + "Original Shape of y_train = " + str(self._y_train.shape))
            len_test =  self._X_test.shape[0]
            #print(len_test)
            print("Original shape of X_test = " + str(self._X_test.shape) +
              "\n" + "Original Shape of y_test = " + str(self._y_test.shape))
            self._X_train = self._X_train.reshape(len_train, 28*28) 
            self._X_test  = self._X_test.reshape(len_test, 28*28) 

        # Common Mnist handling 
        if ( self._my_data_set == "mnist" or self._my_data_set == "mnist_784" or self._my_data_set == "mnist_keras" ): 
            self._common_handling_of_mnist()    
        
        # Other input data sets can not yet be handled 

 
We first check, whether the input parameter fits a known dataset – and raise an error if otherwise. The data come in different forms for the three sources of MNIST. For each set we want to extract the arrays

self._X_train, self._X_test, self._y_train, self._y_test.

We have to do this a bit differently for the 3 cases. Note that the “mnist_784” set from “fetch_openml” gives the target category values in form of strings and not integers. We correct this directly after loading.

The fastest method for importing the MNIST dataset is based on “keras”; the keras function “kmnist.load_data()” provides already a 60000:10000 ratio for training and test data. However, we get the images in a (60000, 28, 28) array shape; we therefore reshape the “_X_train”-array to (60000, 784) and “_X_test”-array to (10000, 784).

Analysis of the input data and the one-hot-encoding of the target labels

A further handling of the MNIST data requires some common analysis.

    # Method for common input data handling of Mnist data sets
    def _common_handling_of_mnist(self):    
        print("\nFinal input data for dataset " + self._my_data_set + 
              " : \n" + "Shape of X_train = " + str(self._X_train.shape) + 
              "\n" + "Shape of y_train = " + str(self._y_train.shape) + 
              "\n" + "Shape of X_test = " + str(self._X_test.shape) + 
              "\n" + "Shape of y_test = " + str(self._y_test.shape) 
              )
        
        # mixing the training indices 
        shuffled_index = np.random.permutation(60000)
        self._X_train, self._y_train = self._X_train[shuffled_index], self._y_train[shuffled_index]
        
        # set 
dimensions 
        self._dim_sets = self._y_train.shape[0]
        self._dim_features = self._X_train.shape[1] 
        self._dim_img = math.sqrt(self._dim_features)
        # we assume square images 
        self._img_h = int(self._dim_img)
        self._img_w = int(self._dim_img)
         
        # Print dimensions  
        print("\nWe have " + str(self._dim_sets) + " data sets for training") 
        print("Feature dimension is " + str(self._dim_features) + " (= " + str(self._img_w)+ "x" + str(self._img_h) + ")") 

        # we need to encode the digit labels of mnist 
        self._get_num_labels()
        self._encode_all_mnist_labels()

 
As you see we retrieve some of our class attributes which we shall use during training and do some printing. This is trivial. Not as trivial is, however, the handling of the output data:

What shape do we expect for the “_X_train” and “_y_train”? Each element of the input data set is an array with values for all features. Thus the “_X_train.shape” should be (60000, 784). For _y_train we expect a simple integer describing the digit to which the MNIST input image corresponds. Thus we expect a one dimensional array with _y_train.shape = (60000). So far, so good …

But: The output data of our ANN for one input element will be provided as an array of values for our 10 different categories – and not as a simple number. To account for this we need to encode the “_y_train”-data, i.e. the target labels, into an usable array form. We use two methods to achieve this:

    # Method to get the number of target labels 
    def _get_num_labels(self):
        self._n_labels = len(np.unique(self._y_train))
        print("The number of labels is " + str(self._n_labels))
        

    # Method to encode all mnist labels 
    def _encode_all_mnist_labels(self, b_print=True):
        '''
        We shall use vectorized input and output - i.e. we process a whole batch of input data sets in parallel
        (see article in the Linux blog) 
        The output array will then have the form OUT(i_out_node, idx) where 
            i_out_node enumerates the node of the last layer (i.e. the category)    
            idx enumerates the data set within a batch,
        After training, if y_train[idx] = 6, we would expect an output value of OUT[6,idx] = 1.0 and OUT[i_node, idx]=0.0 otherwise 
        for a categorization decision in the ideal case. Realistically, we will get a distribution of numbers over the nodes 
        with values between 0.0 and 1.0 - with hopefully the maximum value at the right node OUT[6,idx].  
        
        The following method creates an arrays OneHot[i_out_node, idx] with 
        OneHot[i_node_out, idx] = 1.0, if i_node_out =  int(y[idx])
        OneHot(i_node_out, idx] = 0.0, if i_node_out != int(y[idx])  
        
        This will allow for a vectorized comparison of calculated values and knwon values during training 
        '''
       
        self._ay_onehot = np.zeros((self._n_labels, self._y_train.shape[0]))
        # ay_oneval is just for convenience and printing purposes 
        self._ay_oneval = np.zeros((self._n_labels, self._y_train.shape[0], 2))
        
        if b_print: 
            print("\nShape of y_train = " + str(self._y_train.shape))
            print("Shape of ay_onehot = " + str(self._ay_onehot.shape))
        
        # the next block is just for illustration purposes and a better understanding
        if b_print: 
            values = enumerate(self._y_train[0:12])
            print("\nValues of the enumerate structure for the first 12 elements : = ")

            for iv in values: 
                print(iv)
        
        # here we prepare the array for vectorized 
comparison 
        print("\nLabels for the first 12 datasets:")
        for idx, val in enumerate(self._y_train):
            self._ay_onehot[val, idx ]   = 1.0
            self._ay_oneval[val, idx, 0] = 1.0 
            self._ay_oneval[val, idx, 1] = val 
       
        if b_print: 
            print("\nShape of ay_onehot = " + str(self._ay_onehot.shape))
            print(self._ay_onehot[:, 0:12])
            #print("Shape of ay_oneval = " + str(self._ay_oneval.shape))
            #print(self._ay_oneval[:, 0:12, :])

 
The first method only determines the number of labels (= number of categories). We see from the code of the second method that we encode the target labels in the form of two arrays. The relevant one for our optimization algorithm will be “_ay_onehot”. This array is 2-dimensional. Why?

Working with mini-batches

A big advantage of the weight optimization method we shall use later on during training of our MLP is that we will perform weight adjustment for a whole bunch of training samples in one step. Meaning:

We propagate a whole bunch of test data samples in parallel through the grid to get an array with result data (output array) for all samples.

Such a bunch is called a “batch” and if it is significantly smaller than the whole set of training data – a “mini-batch“.

Working with “mini-batches” during the training and learning phase of an ANN is a compromise between

  • using the full data set (for gradient evaluation) during each training step (“batch approach“)
  • and using just one sample of the training data set for gradient descent and weight corrections (“stochastic approach“).

See chapter 4 of the book of Geron and chapter 2 in the book of Raschka for some thorough information on this topic.

The advantage of mini-batches is that we can use vectorized linear algebra operations over all elements of the batch. Linear Algebra libraries are optimized to perform the resulting vector and matrix operations on modern CPUs and GPUs.

You really should keep the following point in mind to understand the code for the propagation and optimization algorithms discussed in forthcoming articles:
The so called “cost function” will be determined as some peculiar sum over all elements of a batch and the usual evaluation of partial derivatives during gradient descent will be based on matrix operations involving all input elements of a defined batch!

Mini-batches also will help during training in so far as we look at a bunch of multiple selected samples in parallel to achieve bigger steps of our gradient guided descent into an minimum of the cost hyperplane in the beginning – with the disadvantage of making some jumpy stochastic turns on the cost hyperplane instead of a smoother approach.

I probably lost you now 🙂 . The simpler version is: Keep in mind that we later on will work with batches of training data samples in parallel!

However, the separation interface for our categories in the feature space must in the end be adjusted with respect to all given data points of the training set. This means we must perform the training successively for a whole sequence of mini-batches which together cover all available training samples.

What is the shape of the output array?
A single element of the batch is an array of 784 feature values. The corresponding output array is an array with values for 10 categories (here digits). But, what about a whole bunch of test data, i.e. a “batch”?

As I have explained already in my last article
Numpy matrix multiplication for layers of simple feed forward ANNs
the output array for a batch of test data will have the form “_ay_a_Out[i_out_node, idx]” with:

  • i_out_node enumerating the node of the last layer, i.e. a possible category
  • idx enumerating the data sample within a batch of training data

We shall construct the output function such that it provides something like “probability” values within the interval [0,1] for each node of the output layer. We define a perfectly working MLP as one which – after training – produces a “1.0” at the correct category node (i.e. the expected digit) and “0.0” at all other output nodes.

One-hot-encoding of labels
Later on we must compare the real results for the training samples with the expected correct values. To be able to do this we must build up a 2-dim array of the same shape as “_ay_a_out” with correct output values for all test samples of the batch. E.g.: If we expect the digit 7 for the input array of a sample with index idx within the set of training data, we need a 2-dim output array with the element [[0,0,0,0,0,0,0,1,0,0], idx]. The derivation of such an array from a given category label is called “one-hot-encoding“.

By using Numpy’s zero()-function and Pythons “enumerate()”-function we can achieve such an encoding for all data elements of the training data set. See the method “_encode_all_mnist_labels()”. Thus, the array “_ay_onehot” will have a shape of (10, 60000). From this 2-dim array we can later slice out bunches of consecutive test data for mini-batches. The array “_ay_oneval” is provided for convenience and print purposes, only: it provides the expected digit value in addition.

First tests via a Jupyter notebook

Let us test the import of the input data and the label encoding with a Jupyter notebook. In previous articles I have described already how to use such a notebook. I set up a Jupyter notebook called “myANN” (in my present working directory “/projekte/GIT/ai/ml1/mynotebooks”).

I start it with

myself@mytux:/projekte/GIT/ai/ml1> source bin/activate 
(ml1) myself@mytux:/projekte/GIT/ai/ml1> jupyter notebook
[I 15:07:30.953 NotebookApp] Writing notebook server cookie secret to /run/user/21001/jupyter/notebook_cookie_secret
[I 15:07:38.754 NotebookApp] jupyter_tensorboard extension loaded.
[I 15:07:38.754 NotebookApp] Serving notebooks from local directory: /projekte/GIT/ai/ml1
[I 15:07:38.754 NotebookApp] The Jupyter Notebook is running at:
[I 15:07:38.754 NotebookApp] http://localhost:8888/?token=06c2626c8724f65d1e3c4a50457da0d6db414f88a40c7baf
[I 15:07:38.755 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
[C 15:07:38.771 NotebookApp] 

and add two cells. The first one is for the import of libraries.

By the last line I import my present class code. With the second cell I create an instance of my class; the “__init__()”-function is automatically executed ad calls the other methods defined so far:

The output is:

Note that the display of “_ay_onehot” shows the categories in vertical (!) direction (rows) and the index for the input data element in horizontal direction (columns)! You see that the labels in the enumerate structure correspond to the “1”s in the “_ay_onehot”-array.

Conclusion

Importing the MNIST dataset into Numpy arrays via Keras is simple – and has a good performance. We have learned a bit about “one-hot-encoding” and prepared an array “_ay_onehot”, which we shall use during ANN training and weight optimization. It will allow us to calculate a difference between the actual output values of the ANN at the nodes of the output layer and a “1.0” value at the node for the expected sample category and “0.0” otherwise.

In the next article
A simple program for an ANN to cover the Mnist dataset – II
we shall define initial weights for our ANN.

Literature and links

Referenced Books
“Python machine Learning”, Seb. Raschka, 2016, Packt Publishing, Birmingham, UK
“Machine Learning mit Sckit-Learn & TensorFlow”, A. Geron, 2018, O’REILLY, dpunkt.verlag GmbH, Heidelberg, Deutschland

Links regarding cost (or loss) functions and logistic regression
https://towardsdatascience.com/introduction-to-logistic-regression-66248243c148
https://cmci.colorado.edu/classes/INFO-4604/files/slides-5_logistic.pdf
Wikipedia article on Loss functions for classification
https://towardsdatascience.com/optimization-loss-function-under-the-hood-part-ii-d20a239cde11
https://stackoverflow.com/questions/32986123/why-the-cost-function-of-logistic-regression-has-a-logarithmic-expression
https://medium.com/technology-nineleaps/logistic-regression-gradient-descent-optimization-part-1-ed320325a67e
https://blog.algorithmia.com/introduction-to-loss-functions/
uni leipzig on logistic regression

Further articles in this series

A simple Python program for an ANN to cover the MNIST dataset – XIV – cluster detection in feature space
A simple Python program for an ANN to cover the MNIST dataset – XIII – the impact of regularization
A simple Python program for an ANN to cover the MNIST dataset – XII – accuracy evolution, learning
rate, normalization

A simple Python program for an ANN to cover the MNIST dataset – XI – confusion matrix
A simple Python program for an ANN to cover the MNIST dataset – X – mini-batch-shuffling and some more tests
A simple Python program for an ANN to cover the MNIST dataset – IX – First Tests
A simple Python program for an ANN to cover the MNIST dataset – VIII – coding Error Backward Propagation
A simple Python program for an ANN to cover the MNIST dataset – VII – EBP related topics and obstacles
A simple Python program for an ANN to cover the MNIST dataset – VI – the math behind the „error back-propagation“
A simple Python program for an ANN to cover the MNIST dataset – V – coding the loss function
A simple Python program for an ANN to cover the MNIST dataset – IV – the concept of a cost or loss function
A simple Python program for an ANN to cover the MNIST dataset – III – forward propagation
A simple Python program for an ANN to cover the MNIST dataset – II – initial random weight values