Autoencoders and latent space fragmentation – VII – face images from statistical z-points close to the latent space region of CelebA

I continue with my analysis of the z-point and latent vector distribution a trained Autoencoder creates in its latent space for CelebA images. These images show human faces. To make the Autoencoder produce new face images from statistically generated latent vectors is a problem. See some previous posts in this series for reasons.

Autoencoders and latent space fragmentation – I – Encoder, Decoder, latent space
Autoencoders and latent space fragmentation – II – number distributions of latent vector components
Autoencoders and latent space fragmentation – III – correlations of latent vector components
Autoencoders and latent space fragmentation – IV – CelebA and statistical vector distributions in the surroundings of the latent space origin
Autoencoders and latent space fragmentation – V – reconstruction of human face images from simple statistical z-point-distributions?

These problems are critical for a generative usage of standard Autoencoders. Generative tasks in Machine Learning very often depend on a clear and understandable structure of the latent space regions an Encoder/Decoder pair uses. In general we would like to create statistical latent vectors such that a reasonable object creation (here: image creation) is guaranteed. In the last post

Autoencoders and latent space fragmentation – VI – image creation from z-points along paths in selected coordinate planes of the latent space

we saw that we at least get some clear face features when we make use of some basic information about the shape and location of the z-point distribution for the images the AE was trained with. This distribution is specific for an Autoencoder, the image set used and details of the training run. In our case the z-point distribution could be analyzed by rather simple methods after the training of an AE with CelebA images had been concluded. The number distribution curves per vector component revealed value limits per latent vector component. The core of the z-point distribution itself appeared to occupy a single and rather compact sub-volume inside the latent space. (The exact properties depend on the AE’s layer structure and the training run.) Of the N=256 dimensions of our latent space only a few determined the off-origin position of the center of the z-point distribution’s core. This multidimensional core had an overall ellipsoidal shape. We could see this both from the Gaussian like number distributions for the components and more directly from projections onto 2-dimensional coordinate planes. (We will have a closer look at these properties which indicate a multivariate normal distribution in forthcoming posts.)

As long as we kept the statistical values for artificial latent vector components within the value ranges set by the distribution’s core our chances that the AE’s Decoder produced images with new and clearly visible faces rose significantly. So far we have only used z-points along defined paths crossing the distributions core. In this post I will vary the components of our statistically created latent vectors a bit more freely. This will again show us that correlations of the vector components are important.

Constant probability for each component value within a component specific interval

In the first posts of this series I naively created statistical latent vectors from a common value range for the components. We saw this was an inadequate approach – both for general mathematical and for problem specific reasons. The following code snippets shows an approach which takes into account value ranges coming from the Gaussian-like distributions for the individual components of the latent vectors for CelebA. The arrays “ay_mu_comp” and “ay_mu_hw” have the following meaning:

  • ay_mu_comp: Component values of a latent vector pointing to the center of the CelebA related z-point distribution
  • ay_mu_hw: Half-width of the Gaussian like number distribution for the component specific values
num_per_row  = 7
num_rows     = 3
num_examples = num_per_row * num_rows

fact = 1.0

# Get component specific value ranges into an array 
li_b = []
for j in range(0, z_dim):  
    add_val = fact*abs(ay_mu_hw[j])
    b_l = ay_mu_comp[j] - add_val
    b_r = ay_mu_comp[j] + add_val
    li_b.append((b_l, b_r))
    
# Statistical latent vectors
ay_stat_zpts = np.zeros( (num_examples, z_dim), dtype=np.float32 )     
for i in range(0, num_examples): 
    for j in range(0, z_dim):
        b_l = li_b[j][0]
        b_r = li_b[j][1]
        val_c = np.random.uniform(b_l, b_r) 
        ay_stat_zpts[i, j] = val_c

# Prediction 
reco_img_stat = AE.decoder.predict(ay_stat_zpts)
# print("Shape of reco_img = ", reco_img_stat.shape)

The main difference is that we take random values from real value intervals defined per component. Within each interval we assume a constant probability density. The factor “fact” controls the width of the value interval we use. A small value covers the vicinity of the center of the CelebA z-point distribution; a larger fact leads to values at the border region of the z-point distribution.

Image results for different value ranges

fact=0.4

fact=0.5

fact=0.6

fact=0.7

fact=0.8

fact=0.9

fact=1.0

Selected individuals

Below you find some individual images created for a variety of statistical vectors. They are ordered by a growing distance from the center of the CelebA related z-point distribution.

Quality? Missing correlations?

The first thing we see is that we get problems for all factors fact. Some images are OK, but others show disturbances and the contrasts of the face against the background are not well defined – even for small factors fact. The reason is that our random selection ignores correlations between the components completely. But we know already that there are major correlations between certain vector components.

For larger values of fact the risk to place a generated latent vector outside the core of the CelebA z-point distribution gets bigger. Still some images interesting face variations.

Obviously, we have no control over the transitions from face to hair and from hair to background. Our suspicion is that micro-correlations of the latent vector components for CelebA images may encode the respective information. To understand this aspect we would have to investigate the vicinity of a z-point a bit more in detail.

Conclusion

We are able to create images with new human faces by using statistical latent vectors whose component values fall into component specific defined real value intervals. We can derive the limits of these value ranges from the real z-point distribution for CelebA images of a trained AE. But again we saw:

One should not ignore major correlations between the component values.

We have to take better care of this point in a future post when we perform a transformation of the coordinate system to align with the main axes of the z-point distribution. But there is another aspect which is interesting, too:

Micro-correlations between latent vector components may determine the transition from faces to complex hair and background-patterns.

We can understand such component dependencies when we assume that the superposition especially of small scale patterns a convolutional Decoder must arrange during image creation is a subtle balancing act. A first step to understand such micro-correlations better could be to have a closer look at the nearest CelebA z-point neighbors of an artificially created latent z-point. If they form some kind of pattern, then maybe we can change the components of our z-point a bit in the right direction?

Or do we have to deal with correlations on a much coarser level? What do the Gaussians and the roughly elliptic form of the core of the z-point distribution for CelebA images really imply? This is the topic of the next post.

Autoencoders and latent space fragmentation – VIII – approximation of the latent vector distribution by a multivariate normal distribution and ellipses

 

Autoencoders and latent space fragmentation – VI – image creation from z-points along paths in selected coordinate planes of the latent space

It is well known that standard (convolutional) Autoencoders [AEs] cause problems when you want to use them for creative purposes. An example: Creating images with human faces by feeding the Decoder of a suitably trained AE with random latent vectors does not work well. In this series of posts I want to identify the cause of this specific problem. Another objective is to circumvent some of the related obstacles and create reasonably clear images nevertheless. Note that I speak about standard Autoencoders, not Variational Autoencoders or transformer based Encoder/Decoder-systems. For basic concepts, terms and methods see the previous posts:

Autoencoders and latent space fragmentation – I – Encoder, Decoder, latent space
Autoencoders and latent space fragmentation – II – number distributions of latent vector components
Autoencoders and latent space fragmentation – III – correlations of latent vector components
Autoencoders and latent space fragmentation – IV – CelebA and statistical vector distributions in the surroundings of the latent space origin
Autoencoders and latent space fragmentation – V – reconstruction of human face images from simple statistical z-point-distributions?

So far I have demonstrated that randomly generated vectors most often do not hit the relevant regions in the AE’s latent space – if we do not take some data specific precautions. A relevant region is a confined volume which a trained Decoder fills with z-points for its training objects after the training has been completed. z-points and corresponding latent vectors are the result of an encoding process which maps digitized input objects into the latent space. Depending on the data objects we may get multiple relevant regions or just one compact region. In the case of a convolutional AE which I had trained with the CelebA dataset of human face images I found single region with a rather compact core.

In this post I want to create statistical latent vectors whose end-points are located inside the relevant region for CelebA images. Then I will create images from such latent vectors with the help of the AE’s Decoder. My hope is to get at least some images with clearly visible human faces. The basic idea behind this experiment is that the most important features of human faces are encoded by a few dominant vector components defining the overall position and shape of the multidimensional z-point region for CelebA images. We will see that the theory is indeed valid: Here is a first example for a vector pointing to an outer area of the core region for CelebA images in the latent space:

Our AE is a convolutional one. The number of latent space dimensions N was chosen to be N=256.
Note: We are NOT using a Variational Autoencoder, but a simple standard Autoencoder. The AE’s properties were discussed in previous posts.

What have we found out so far?

The Encoder of the convolutional AE, which I had trained with the CelebA dataset, mapped the human face images into a compact region of the latent space. The core of the created z-point distribution was located within or very close to a tiny hyper-volume of the latent space spanned by only a few coordinate axes. The confined multi-dimensional volume occupied by most of the z-points had an overall ellipsoidal shape with major extensions along a few main axes. We saw that some of the coordinates of the CelebA z-points and the components of the corresponding latent vectors were strongly correlated. In addition the value range of each of the latent vector components had specific individual limits – confining the angles and lengths of the vectors for CelebA. Therefore we had to conclude:

Whenever we base our method to create statistical vectors on the assumptions

  • that one can treat the vector components as independent statistical variables
  • that one can assign statistical values to the components from a common real value interval

the vectors will almost certainly not point to the relevant region. In addition one has to take into account unexpected mathematical properties of statistical vector distributions in high dimensional spaces. See the previous posts for more details. Indeed we could show that such a vector generation method missed the CelebA region.

Objective of this post

In this post I want to use some of the knowledge which we have gathered about the latent vector distribution for CelebA images. We shall use a very simple approach to probe the image reconstruction abilities of the Decoder for a defined variety of z-points:

We restrict the vectors’ component values such that most of the vectors point to the region formed by the bulk of CelebA z-points. To achieve this we define straight line segments which cross the ellipsoidal region of CelebA z-points. This is possible due to the known value intervals which we have identified for each of the components in a previous post. Then we place some artificial z-points onto our line segments. At least some of these z-points will fall into the relevant CelebA region. We then let the Decoder reconstruct images for the latent vectors corresponding to these z-points.

In some cases our paths will even respect some major component correlations, but for some paths I will explicitly disregard such correlations. Nevertheless our rather simple restrictions imposed on the vector-component values will already enable us to produce images with clearly recognizable face features.

Among other things our results confirm the idea that the real pixel correlations for basic face features are represented by relatively narrow limits for the angles and lengths of respective latent vectors. The extension and shape of the bulk region of CelebA z-points is defined by only a few latent vector components. These components apparently encode a prescription for the (convolutional) Decoder to create face features by a superposition of some elementary patterns extracted during the AE’s training.

A path from the latent space origin to the center of the relevant z-point region

How do we restrict latent vectors to the required value ranges? In the 2nd post we have seen that the number distribution curve for the values of each of the latent vector components was very similar to a Gaussian. We have identified the mean value and average value range for each component by analyzing its specific distribution curve. The mean values gave us the coordinates of the center of the relevant latent space region. In addition we, of course, know the coordinates of the origin of the latent space. So, for a first test, let us create a multi-dimensional line segment between the origin and the center of the CelebA z-point distribution. And let the A’s Decoder create images for latent vectors pointing to some intermediate z-points along this path.

The following plots show orthogonal projections of 5000 CelebA z-points (in blue) onto some 2-dimensional planes spanned by two selected coordinate axes. The yellow dot indicates the origin. The orange dot the center of the z-point distribution. Red dots indicate coordinates of points along the straight path between the origin and the distribution center.

Please, take note of the different scales on the x- and y-axes. Some distributions are much more elongated than the scaled images show. That some paths appear shorter than others is due to the projection of the diagonal line through the multi-dimensional space onto planes which are differently oriented with respect to this line. A simple 3D analog should make this clear. Some small wiggles in the positions of the red dots are due to resolution problems of the plot on the browser interface. We also see a reflection of the fact that the origin is located in a border region of the bulk.

Below you see a plot which shows the path in higher resolution (projected onto a particular plane):

Again: Take note of the different axis scales. The blue dot distribution is much more stretched in C1-direction than it appears in the plot.

Ok, now we have a multidimensional path and six well defined latent vectors for the end and intermediate points on this path. So let us provide these vectors as input to the our AE’s Decoder. The resulting images look like:

Success! Images in the surroundings of the center show a clearly visible face. And we also see: The average face at the center of the z-point distribution is female – at least according to the CelebA dataset. 🙂 However: In the vicinity of the origin of the latent space we get no images with reasonable face features.

Images along a path within a selected coordinate plane for two dominant vector components

I choose a different path within the plane spanned by the coordinates axes 151 and 195 now. This is depicted in the plot below:

A look into the second post shows you that the components 151, 195 were members of the group of dominant components. Those were components for which the number distribution showed a mean value at some distance from the origin of the latent space and also had a half-width bigger than 1.0 (as most of the other components). The images reconstructed by the Decoder from the latent vectors are:

Hey, we get some variation – as expected. Now, let us rotate the path in the plane:

Not so much of a difference. But we have learned that a variation of some vector component values within the allowed range of values may give us already some major variation in the faces’ expressions.

Images for other coordinate planes

The following images show the variations for paths in other coordinate planes. All of the paths have in common that they pass the center of the CelebA bulk region. For the first 4 examples I have kept the path within the core region of CelebA z-points. The last images show images for paths with z-points at the core’s border regions or a bit outside of it.

Plane axes: 5, 8

Plane axes: 17, 180

Plane axes: 44, 111

Plane axes: 55, 56

Plane axes: 15, 242

Plane axes: 58 202

Plane axes: 68, 178

Plane axes: 177, 202

Plane axes: 180, 242

The images for z-points farther away from the bulk’s center give you more interesting variations. But obviously in the outer areas of the CelebA region correlations between the latent vector components get more important when we want to avoid irregular and unrealistic disturbances. All in all we also get the impression that a much more subtle correlation of component values is a key for the reproduction of realistic transitions for the hairdos presented in the CelebA images and the transition to some realistic background patterns. The components of our latent vectors are still too uncorrelated for such details and an appropriate superposition of micro-patterns in the images created by the Decoder.

Conclusion

This blog shows that we do not need a Variational Autoencoder to produce images with recognizable human faces from statistical latent vectors. We can get image reproductions with varying face features also from the Decoder of a standard convolutional Autoencoder. A basic requirement seems to be that we keep the vector components within reasonable value intervals. The valid component specific value ranges are defined by the shape of the compact hyper-volume, which an AE’s Encoder fills with z-points for its training objects. So we need to construct statistical latent vectors which point to this specific sub-region of the latent space. Vectors with arbitrary components will almost certainly miss this region and give no interpretable image content.

In this post we have looked at vectors defining z-points along specific line segments in the latent space. Some of the paths were explicitly kept within the inner core regions of the z-point-distribution for CelebA images. From these z-points the most important face features were clearly reconstructed. But we also saw that some micro-correlations of the latent vector components seem to control the appearance of the background and the transition from the face to hair and from the hair to the background-environment.

I have not yet looked at line segments which do not cross the center of the bulk of the z-point distribution for CelebA images in the latent space. But in the next post

Autoencoders and latent space fragmentation – VII – face images from statistical z-points close to the latent space region of CelebA

I first want to look at z-points for which we relatively freely vary the component values within ranges given by the respective number distributions.

 

Autoencoders and latent space fragmentation – IV – CelebA and statistical vector distributions in the surroundings of the latent space origin

I continue with my investigation of the z-point- and latent vector distribution which a convolutional Autoencoder [AE] creates in its latent space for CelebA images. Such images show human faces – and our objective is to find out whether we can force the AE’s Decoder to create human face images from artificially generated and statistically distributed z-points in the latent space. E.g. for creative tasks – without using a Variational Autoencoder.

The first posts of this series

Autoencoders and latent space fragmentation – I – Encoder, Decoder, latent space
Autoencoders and latent space fragmentation – II – number distributions of latent vector components
Autoencoders and latent space fragmentation – III – correlations of latent vector components

have revealed that the multi-dimensional volume region filled with z-points for CelebA images is rather small and has an ellipsoidal shape. The region is extended in the direction of a few main axes. Its center is located at some distance from the origin of the latent space. Its position is rather close to or within a hyper-volume of the latent space spanned by a few axes, only. The origin of the latent space is instead located close to the border of the bulk region of CelebA z-points.

We have also found out that artificially created z-points may miss the region of the CelebA z-points. In particular when we generate respective vectors under the assumption that the vector components are independent variables and can be filled with values obeying a constant probability distribution within a real value interval [-b, b]. See the second post for links to a study of the mathematical properties of such artificial vector distributions. We saw that the radii of the artificial vectors only match those of CelebA vectors if we choose 1.0 < b < 2.0. An optimal value appeared to be b = 1.5. This means that the created statistical vectors would have positions relatively close to the origin. We had hoped that such artificial vectors overlap at least in parts with the latent vector distribution for CelebA. Such an overlap may be required to get a reconstruction of images with clearly visible human faces.

In this post I, therefore, have a look at the surroundings of the latent space origin. We focus on projections of the neighboring z-points onto planes formed by selected latent vector components. We choose these components such that the border position of the origin with respect to the volume occupied by the bulk of CelebA z-points becomes clear. We afterward look at real and artificial z-points close to a slice of the multi-dimensional latent space volume. The vectors to the z-points in this slice fulfill the following condition: All components x_j, with the exception of two selected ones, have values x_j < 1.5. This will reduce projection effects with respect to the selected projection plane. The results will show us that many of the artificial z-points unfortunately fall into empty regions (voids). It is sufficient to show this for some selected coordinate pairs. The latent space of our AE has N=256 dimensions.

Position of the origin with respect to the CelebA z-point distribution

First I want to remind you of the border position of the latent space’s origin with respect to the bulk of the CelebA z-point-distribution. The following plots show again 5000 randomly selected z-points corresponding to latent vectors for CelebA images (blue points). The yellow point marks the origin of the latent space. The red dots correspond to 10 artificially created z-points for b = 1.5. The individual plots correspond to selected pairs of vector components and planes spanned by respective axes.

That the center of the distribution appears extremely densely populated is a bit due to the chosen diameter of the blue points. When interpreting these plots, please note: We are looking at orthogonal projections. Therefore we always have to take into account projection effects.

A closer look at the environment of the latent space’s origin

The following plot shows the environment of the origin with a higher resolution for our 5600 z-points. Despite the fact that this is a projection of many points onto the selected plane we get a first impression that CelebA z-point distribution is not really a homogeneous one – although being a relatively dense one around the center of the ellipsoidal bulk distribution.

Some of our artificial z-points seem in both cases to mix with the CelebA z-points. Below I want to show that this is a projection effect, only.

The surroundings of the origin in a flat cuboid

In the second post of this series we had derived that a parameter b = 1.5 is optimal to get the right vector length of our artificial statistical vectors to match the length of the latent CelebA vectors. Therefore, I have reduced the amount of CelebA z-points by imposing the following conditions on the components x_j:

-1.5 ≤   x_j   ≤ 1.5,    for all j in [0, 256], with the exception of two selected values j = j1 or j = j2

I.e. we look at CelebA z-points close to the plane defined by the axes corresponding to our specially selected vector components x_j1 and x_j2. Thus we get rid of projection effects from any points outside the multi-dimensional slice. We only get projections from points inside our multi-dimensional slice, which contains the cube defined by a side-length -1.5 ≤ x_j ≤ +1.5 around the origin. Our statistically generated vectors have end-points inside this multi-dimensional cube. The result is:

Ooops, only two out of our 5000 CelebA points are present in the slice region, which I also have populated with 200 artificial z-points. So, clearly this is not a region which the AE’s Encoder fills densely for CelebA images.

Even for 80,000 CelebA z-points the situation does not improve so much. Only 56 latent CelebA vectors point to our region.

Most of the artificially created z-points (in red) thus come to fall into empty volume regions – regions not used by CelebA z-points. This already diminishes our chances to reconstruct reasonable human face images by our artificial distribution of latent vectors.

Situation for a second and a third plane

Can we reproduce this also for other component pairs? Yes, indeed, e.g. for the pair (177, 242):

For 5000 CelebA z-points:

Only one out of 5000 CelebA vectors points to the relevant slice:

For 80,000 images 39 regular CelebA z-points survive, only. I skip the respective image.

Vector components (30, 118)
Another interesting pair of components and respective coordinate axes is (30, 118):

And for our slice we get:

From 80,000 points only around 70 are located in our slice of the multidimensional space:

Vector components (118, 156)
For the pair (118, 156) the respective plots are:

We see some overlaps between the artificially created points and the CelebA z-points. However, you should keep in mind that the probability that an artificial point falls into a void in the multi-dimensional space gets bigger with every individual component value putting the point outside the CelebA bulk region. And: Our “overlaps” are still the result of a (significantly reduced) projection effect. Furthermore, the plots do not distinguish the components of an individual point from those of other points. If one component shows an overlap with CelebA points, another component for the same point may not. And one component is enough to determine a position outside the bulk.

Radii of the artificially created z-points

When rating probabilities of our artificially created z-points to hit a region populated by CelebA z-points you should also remember that our artificially created points fall into a rather narrow spherical shell for so many dimensions as our latent space has. See the second post of this series for this phenomenon.

Conclusion

What have we learned? The second post in this series gave us hope that at least some of the artificially created z-points (based on independent component values taken with a constant probability from a common value interval) would get a position within the confined region populated by the real CelebA z-points. A closer look, however, showed us that the origin of the latent space resides within a border-region of the ellipsoidal bulk of the multi-dimensional CelebA z-point distribution. Only very few CelebA z-points are found in this border region and within slices close to selected coordinate planes.

What does this mean? The chances that most of the artificially created z-points for b = 1.5 will fall into a void not used by the AE’s Decoder for CelebA images is much bigger than we originally may have thought. In addition our statistical points only populate a spherical shell within a multi-dimensional cube around the origin of the latent space with a side length of 2b. Even if we compensate this effect by generating vectors for different b-values we do not gain much. This raises the fundamental question whether a method that generates statistical z-points via independent component values is a reasonable choice for our objective to reconstruct human face images.

In the next post

Autoencoders and latent space fragmentation – V – reconstruction of human face images from simple statistical z-point-distributions?

I will show that the results of such reconstruction efforts are indeed frustrating. As a consequence I will discuss how we could simply adjust our generating method to the real distribution of latent vectors for CelebA images.