Fun with shear operations and SVD – IV – Shearing of ellipses

This post requires Javascript to display formulas!

In the previous posts of this series we got acquainted with shear operations:

Fun with shear operations and SVD – I – shear matrices and examples created with Blender
Fun with shear operations and SVD – II – Shearing of rectangles and cubes with Python and Matplotlib
Fun with shear operations and SVD – III – Shearing of circles

Already established results for shearing a circle

Post III focused on the shearing of a circle, which was centered in the Euclidean coordinate system [ECS] we worked with. The shear operation resulted in an ellipse with an inclination against the coordinate axes of our ECS. This was interesting regarding four points:

  • A circle, which is centered in a chosen ECS, exhibits a continuous rotational symmetry (isotropy). This obviously allows for a decomposition of a shear operation into a sequence of two affine operations in the chosen ECS: a scaling operation (with different factors along the coordinate axes) followed by a rotation (or the other way round). Equivalently: We could switch to another specific ECS which is already rotated by a proper angle against our originally chosen ECS and just perform a scaling operation there.
    The rotation angle is determined by the shear parameter λ.
    This seems to stand in some contrast to the shearing of figures with only discrete rotational symmetries: We saw for rectangles and cubes that an additional rotation was required to replace the shear operation by a sequence of scaling and rotation operations.
  • Points (x, y) of circles and ellipses are described by quadratic forms in two dimensions (with some real coefficients α, β, γ, δ):
    \[
    \alpha \,x^2 \, + \, \beta \, x \, y \, + \, \gamma \, y^2 \:=\: \delta
    \]

    Quadratic forms play a general role in the mathematical description of cone-sections. (Ellipses are the results of specific cone-sections.)

  • Ellipses also result from projections of multi-dimensional ellipsoids onto two-dimensional coordinate planes. Multi-dimensional ellipsoids are described by quadratic forms in an ECS covering the ℝn.
  • Hyper-surfaces for constant probability density values of multivariate normal vector distributions form multi-dimensional ellipsoids. Here we have a link to Machine Learning where key properties of certain objects are often ruled by Gaussian distributions.

From the first point we may expect that a shear operation applied to a multi-dimensional sphere will result in a multi-dimensional ellipsoid – and that such an operation could be replaced by scaling the original sphere (with different factors along n coordinate axes of a n-dimensional ECS) followed by a rotation (or vice versa). We will explicitly investigate this for a 3-dimensional sphere in the next post.

If our assumption were true we would get a first glimpse of the fact that a general multivariate standard distribution can be created by applying a sequence of distinct affine (i.e. linear) operations to a spherical probability distribution. This is discussed in detail in another post-series in this blog.

What is a bit confusing at the moment is that a replacement of a shear operation by simpler affine operations in general seems to require at least two rotations, but only one when we work with centered isotropic bodies. We come back to this point when we discuss the decomposition of a shear matrix by the so called SVD-procedure.

In the previous post of this series we have used the radius of the circle and the shearing parameter λ to derive analytical expressions for the coordinates of special points with extremal values on our ellipse

  • Points with maximal and minimal y-coordinate values.
  • Points with a maximal or minimal distance to the symmetry center of the ellipse. I.e. the end-points of the principal diameters of the ellipse.

From the fact that shearing does not change extremal values along the axis perpendicular to the sharing direction we could easily determine the lengths of the ellipse’s principal axes and the inclination angle of the longer axis with the x-axis of our Euclidean coordinate system [ECS].

What do we have in addition? In another mini-series on ellipses

Properties of ellipses by matrix coefficients – I – Two defining matrices (and two more posts)

I have meanwhile described how the geometry of an ellipse is related to its quadratic form and respective coefficients of a symmetric matrix. I call this matrix Aq. It forces the components of position vectors to fulfill an equation based on a quadratic polynomial. Furthermore Aq‘s eigenvalues and eigenvectors define the lengths of the ellipse’s principal axes and their inclination to the axes of our chosen ECS. The matrix coefficients in addition allow us to determine the coordinates of the points with extremal y-values on an ellipse. We will use these results later in the present post.

Objectives of this post: Shearing of a centered, rotated ellipse

In this post I want to show that shearing a given centered, but rotated original ellipse EO results in another ellipse ES with a different inclination angle and different sizes of the principal axes.

In addition we will derive the relations of the shearing parameter λS with the coefficients of the symmetric matrix \(\pmb{\operatorname{A}}_q^S \) that defines ES. I also provide formulas for the dependence of ES‘s geometrical properties on the shear parameter λS.

There are two basic prerequisites:

  1. We must show that the application of a shear transformation to the variables of the quadratic form which describes an ellipse EO results in another proper quadratic form and a related matrix \(\pmb{\operatorname{A}}_q^S \).
  2. The coefficients of the resulting quadratic form and of \(\pmb{\operatorname{A}}_q^S \) must fulfill a mathematical criterion for an ellipse.

We expect point 1 to be valid because a shear operation is just a linear operation.

To get some exercise we approach our goals by first looking at the simple case of shearing an axis-parallel ellipse before extending our considerations to general ellipses with an inclination angle against the coordinate axes of our chosen ECS.

Continue reading

Nach einem Aufenthalt in Niederbayern und der Heimat Aiwangers ….

Hat nichts mit Linux zu tun, ist aber für alle Freiheitsliebende relevant. Nach einem Übermaß an Überflutung mit Plakaten der AfD (“Wir vergessen nicht”) und rechten Stammtischparolen in einem Kurzurlaub verweise ich ohne weiteren Kommentar auf folgenden Link:

https://www.zeit.de/politik/2023-09/gerhard-baum-afd-rechtsextremismus-rechtsruck

Ich bin kein FDP-Wähler, aber wo einer der sehr wenigen verbliebenen Aufrechten in dieser Partei leider zu 100 Prozent recht hat, erhält er meine volle inhaltliche Zustimmung.

An answers to a reader’s concern about this blog

A reader wrote me a mail and asked what the general direction of this blog is going to be. He wondered about the “flood” of formulas lately. Which, in his opinion, have nothing to do with Linux. In general, his impression was that I seemingly have lost my interest in core Linux topics. He, a German, also complained that I write my posts in English.

My first reaction was: I appreciate that some of my readers care. The criticism is justified. And it deserves an answer and some explanations. The easiest part is the question regarding language.

According to my provider and my own blog-statistics 78% of page requests to this blog come from abroad, i.e. from countries outside Germany. Most requests stem from US-systems. Before Russia’s imperialistic war against Europe there also were connections (and permanent attack trials) from both Russia and China. Their percentage has declined (fortunately). Anyway, the majority of page requests comes from outside Germany. Therefore, I try to write in English. My English certainly is not the best, but it is still easier to read for those who are interested in my posts’ contents. And obviously, these are not German readers. So, I will not go back to German again.

Now to the question regarding the declining number of posts related to Linux. In the time when I worked as a free-lancer (up to 2018), I had some German customers who cared about Linux. It was in my own interest to dig a bit deeper as usual into topics like “virtualized VLANs”, firewalls etc.. The articles on these topics are still the most read ones in this blog.

But then I started to work as an employed consultant for IT-management topics in a Windows-dominated company. I simply had no chance and no time to continue with hard core Linux topics until the end of 2022. The only connection that came up was related to minor Machine Learning topics. Since my retirement I again use my private Linux systems – but what I need there simply works. No need to dig deeper at the moment. I intend to shift all of my HW-platforms and in the wake of such an endeavor typically some Linux topics come up, but all of this requires a period of money saving first. The same holds for a private project concerning central Linux-based audio-station. (Side remark: Due to the systematic destruction of the social system in Germany, ironically and mainly by the politics of social democrats, ca. 10 million of the persons going into retirement the next years will get significantly less than 1500 Euros per month. These are official numbers of the German government. I am on the edge of this wave.)

A second point which obviously has an impact on this blog is that I have an education in physics and an inborn interest in math. One of the best aspects of retirement is that you gain a lot of freedom regarding your real interests. No employer longer forces you to focus on things you only work with to earn a living. In my case the physicist woke up in spring 2023. I started to read a lot of books on theoretical physics and cosmology. To find out that I needed to revive some university level mathematics. At the same time I got interested in some admittedly special aspects of my own ML-experiments and network simulations in general. And suddenly you find yourself applying some basic linear algebra and calculus again. An easy but not very thoughtful way to start collecting some simple, but useful results was using this blog. I admit: It has turned the blog’s focus away from Linux.

The solution is clear: This blog has to be split up. I will do this as soon as I find some motivation for the boring task to set up a new blog, database, etc. For the time being I have changed the subtitle of this blog to indicate that other topics have come up.

What I cannot promise is that Linux topics will dominate my interests in the future. As said: What a retired person needs on PCs and laptops normally works perfectly under the control of Linux. Thanks to all the fantastic people of the Open Source community.