Fun with veth devices, Linux virtual bridges, KVM, VMware – attach the host and connect bridges via veth

Typically, virtual “veth” Ethernet devices are used for connecting virtual containers (as LXC) to virtual bridges like an OpenVswitch. But, due to their pair nature, veth” devices promise flexibility also in other, much simpler contexts of virtual network construction. Therefore, the objective of this article is to experiment a bit with “veth” devices as tools to attach the virtualization host itself or other (virtual) devices like a secondary Linux bridge or a VMware bridge to a standard Linux bridge – and thus enable communication with and between virtualized guest systems.

Motivation

I got interested in “veth”-devices when trying to gain flexibility for quickly rebuilding and rearranging different virtual network configurations in a pen-testing lab on Linux laptops. For example:

  • Sometimes you strongly wish to avoid giving a Linux bridge itself an IP. Assigning an IP to a Linux bridge normally enables host communication with KVM guests attached to the bridge. However, during attack simulations across the bridge the host gets very exposed. In my opinion the host can better and more efficiently be protected by packet filters if it communicates with the bridge guests over a special “veth” interface pair which is attached to the bridge. In other test or simulation scenarios one may rather wish to connect the host like an external physical system to the bridge – i.e. via a kind of uplink port.
  • There are scenarios for which you would like to couple two bridges, each with virtual guests, to each other – and make all guests communicate with each other and the host. Or establish communication from a guest of one Linux bridge to VMware guests of a VMware bridge attached to yet another Linux bridge. In all these situations all guests and the host itself may reside in the same logical IP network segment, but in segregated parts. In the physical reality admins may have used such a segregation for improving performance and avoiding an overload of switches.
  • In addition one can solve some problems with “veth” pairs which otherwise would get complicated. One example is avoiding the assignment of an IP address to a special enslaved ethernet device representing the bridge for the Linux system. Both libvirt’s virt-manager and VMware WS’s “network editor” automatically perform such an IP assignment when creating virtual host-only-networks. We shall come back to this point below.

As a preparation let us first briefly compare “veth” with “tap” devices and summarize some basic aspects of Linux bridges – all according to my yet limited understanding. Afterwards, we shall realize a simple network scenario as for training purposes.

vtap vs veth

A virtual “tap” device is a single point to point device which can be used by a program in user-space or a virtual machine to send Ethernet packets on layer 2 directly to the kernel or receive packets from it. A file descriptor (fd) is read/written during such a transmission. KVM/qemu virtualization uses “tap” devices to equip virtualized guest system with a virtual and configurable ethernet interface – which then interacts with the fd. A tap device can on the other side be attached to a virtual Linux bridge; the kernel handles the packet transfer as if it occurred over a virtual bridge port.

“veth” devices are instead created as pairs of connected virtual Ethernet interfaces. These 2 devices can be imagined as being connected by a network cable; each veth-device of a pair can be attached to different virtual entities as OpenVswitch bridges, LXC containers or Linux standard bridges. veth pairs are ideal to connect virtual devices to each other.

While not supporting veth directly, a KVM guest can bridge a veth device via
macVtap/macVlan (see https://seravo.fi/2012/virtualized-bridged-networking-with-macvtap.

In addition, VMware’s virtual networks can be bridged to a veth device – as we shall show below.

Aspects and properties of Linux bridges

Several basic aspects and limitations of standard Linux bridges are noteworthy:

  • A “tap” device attached to one Linux bridge cannot be attached to another Linux bridge.
  • All attached devices are switched into the promiscuous mode.
  • The bridge itself (not a tap device at a port!) can get an IP address and may work as a standard Ethernet device. The host can communicate via this address with other guests attached to the bridge.
  • You may attach several physical Ethernet devices (without IP !) of the host to a bridge – each as a kind of “uplink” to other physical switches/hubs and connected systems. With the spanning tree protocol activated all physical systems attached to the network behind each physical interface may communicate with physical or virtual guests linked to the bridge by other physical interfaces or virtual ports.
  • Properly configured the bridge transfers packets directly between two specific bridge ports related to the communication stream of 2 attached guests – without exposing the communication to other ports and other guests. The bridge may learn and update the relevant association of MAC addresses to bridge ports.
  • The virtual bridge device itself – in its role as an Ethernet device – does not work in promiscuous mode. However, packets arriving through one of its ports for (yet) unknown addresses may be flooded to all ports.
  • You cannot bridge a Linux bridge directly by or with another Linux bridge (no Linux bridge cascading). You can neither connect a Linux bride to another Linux bridge via a “tap” device.

In combination with VMware (on a Linux host) some additional aspects are interesting:

  • A virtual Linux bridge in its role as an Ethernet device can be bridged by non-native Linux bridges – e.g. by VMware bridges – and thereby be switched into promiscuous mode. The VMware (master) bridge then uses a Linux bridge as an attached (slave) device. This type of bridge cascading may have security impacts: packets arriving via a physical port at the Linux bridge and being destined to VMware guests connected to their VMware master bridge may become visible at the Linux bridge ports. See:
    VMware WS – bridging of Linux bridges and security implications
  • The “vmnet”-Ethernet device related to a VMware bridge on a Linux host can be attached (without an IP-address) to a Linux bridge thus enabling communication between VMware guests attached to a VMware bridge and KVM guests connected to the Linux bridge. However, as this is an uplink like situation we must get rid of any IP address assigned to the “vmnet”-Ethernet device.
  • A test scenario

    I want to realize the following test scenario with the help of veth-pairs:

    Our virtual network shall contain two coupled Linux bridges, each with a KVM guest. The host “mytux” shall be attached via a regular bridge port to only one of the bridges. In addition we want to connect a VMware bridge to one of the Linux bridges. All KVM/VMware guests shall belong to the same logical layer 3 network segment and be able to communicate with each other and the host (plus external systems via routing).

    veth6

    The RJ45 like connectors in the picture above represent veth-devices – which occur in pairs. The blue small rectangles on the Linux bridges instead represent ports associated with virtual tap-devices. I admit: This scenario of a virtual network inside a host is a bit academic. But it allows us to test what is possible with “veth”-pairs.

    Building the bridges

    On our Linux host we use virt-manager’s “connection details >> virtual networks” to define 2 virtual host only networks with bridges “virbr4” and “virbr6”.

    veth7

    Note: We do not allow for bridge specific “dhcp-services” and do not assign network addresses. We shall later configure addresses of the guests manually; you will find some remarks on a specific, network wide DHCP service at the end of the article.

    Then we implement and configure 2 KVM Linux guests (here Kali systems) – one with an Ethernet interface attached to “vibr4”; the other guest will be connected to “virbr6”. The next picture shows the network settings for guest “kali3” which gets attached to “virbr6”.

    veth8

    We activate the networks and boot our guests. Then on the guests (activate the right interface and deactivate other interfaces, if necessary) we need to set IP-addresses: The interfaces on kali2, kali3 must be configured manually – as we had not activated DHCP. kali2 gets the address “192.168.50.12”, kali3 the address “192.168.50.13”.

    veth9

    If we had defined several tap interfaces on our guest system kali3 we may have got a problem to identify the right interface associated with bridge. It can however be identified by its MAC and a comparison to the MACs of “vnet” devices in the output of the commands “ip link show” and “brctl show virbr6”.

    Now let us look what information we get about the bridges on the host :

    mytux:~ # brctl show virbr4
    bridge name     bridge id               STP enabled     interfaces
    virbr4          8000.5254007e553d       yes             virbr4-nic
                                                            vnet6
    mytux:~ # ifconfig virbr4 
    virbr4    Link encap:Ethernet  HWaddr 52:54:00:7E:55:3D  
              UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
    mytux:~ # ifconfig vnet6
    vnet6     Link encap:Ethernet  HWaddr FE:54:00:F2:A4:8D  
              inet6 addr: fe80::fc54:ff:fef2:a48d/64 Scope:Link
    ....
    mytux:~ # brctl show virbr6
    bridge name     bridge id               STP enabled     interfaces
    virbr6          8000.525400c0b06f       yes             virbr6-nic
                                                            vnet2
    mytux:~ # ip addr show virbr6 
    22: virbr6: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default 
        link/ether 52:54:00:c0:b0:6f brd ff:ff:ff:ff:ff:ff
    mytux:~ # ifconfig vnet2
    vnet2     Link encap:Ethernet  HWaddr FE:54:00:B1:5D:1F  
              inet6 addr: fe80::fc54:ff:feb1:5d1f/64 Scope:Link
    .....
    mytux:~ # 
    

     
    Note that we do not see any IPv4-information on the “tap” devices vnet5 and vnet2 here. But note, too, that no IP-address has been assigned by the host to the bridges themselves.

    Ok, we have bridges virbr4 with guest “kali2” and a separate bridge virbr6 with KVM guest “kali3”. The host has no
    role in this game, yet. We are going to change this in the next step.

    Note that virt-manager automatically started the bridges when we started the KVM guests. Alternatively, we could have manually set
    mytux:~ # ip link set virbr4 up
    mytux:~ # ip link set virbr6 up
    We may also configure the bridges with “virt-manager” to be automatically started at boot time.

    Attaching the host to a bridge via veth

    According to our example we shall attach the host now by the use of a veth-pair to virbr4 . We create such a pair and connect one of its Ethernet interfaces to “virbr4”:

    mytux:~ # ip link add dev vmh1 type veth peer name vmh2       
    mytux:~ # brctl addif virbr4 vmh1
    mytux:~ # brctl show virbr4 
    bridge name     bridge id               STP enabled     interfaces
    virbr4          8000.5254007e553d       yes             virbr4-nic
                                                            vmh1
                                                            vnet6
    

     
    Now, we assign an IP address to interface vmh2 – which is not enslaved by any bridge:

    mytux:~ # ip addr add 192.168.50.1/24 broadcast 192.168.50.255 dev vmh2
    mytux:~ # ip addr show vmh2
    6: vmh2@vmh1: <BROADCAST,MULTICAST,M-DOWN> mtu 1500 qdisc noop state DOWN group default qlen 1000
        link/ether 42:79:e6:a7:fb:09 brd ff:ff:ff:ff:ff:ff
        inet 192.168.50.1/24 brd 192.168.50.255 scope global vmh2
           valid_lft forever preferred_lft forever
    

     
    We then activate vmh1 and vmh2. Next we need a route on the host to the bridge (and the guests at its ports) via vmh2 (!!) :

    mytux:~ # ip  link set vmh1 up
    mytux:~ # ip  link set vmh2 up
    mytux:~ # route add -net 192.168.50.0/24 dev vmh2
    mytux:~ # route
    Kernel IP routing table
    Destination     Gateway         Genmask         Flags Metric Ref    Use Iface
    default         ufo             0.0.0.0         UG    0      0        0 br0
    192.168.10.0    *               255.255.255.0   U     0      0        0 br0
    ...
    192.168.50.0    *               255.255.255.0   U     0      0        0 vmh2
    ...
    

     
    Now we try whether we can reach guest “kali2” from the host and vice versa:

    mytux:~ # ping 192.168.50.12
    PING 192.168.50.12 (192.168.50.12) 56(84) bytes of data.
    64 bytes from 192.168.50.12: icmp_seq=1 ttl=64 time=0.291 ms
    64 bytes from 192.168.50.12: icmp_seq=2 ttl=64 time=0.316 ms
    64 bytes from 192.168.50.12: icmp_seq=3 ttl=64 time=0.322 ms
    ^C
    --- 192.168.50.12 ping statistics ---
    3 packets transmitted, 3 received, 0% packet loss, time 1999ms
    rtt min/avg/max/mdev = 0.291/0.309/0.322/0.024 ms
    
    root@kali2:~ # ping 192.168.50.1
    PING 192.168.50.1 (192.168.50.1) 56(84) bytes of data.
    64 bytes from 192.168.50.1: icmp_seq=1 ttl=64 time=0.196 ms
    64 bytes from 192.168.50.1: icmp_seq=2 ttl=64 time=0.340 ms
    64 bytes from 192.168.50.1: icmp_seq=3 ttl=64 time=0.255 ms
    ^C
    --- 192.168.50.1 ping statistics ---
    3 packets transmitted, 3 received, 0% packet loss, time 1998ms
    rtt min/avg/max/mdev = 0.196/0.263/0.340/0.062 ms
    

     
    So, we have learned that the host can easily be connected to a Linux bridge via an veth-pair – and that we do not need to assign an IP address to the bridge itself. Regarding the connection links the resulting situation is very similar to bridges where you use a physical “eth0” NIC as an uplink to external systems of a physical network.

    All in all I like this situation much better than having a bridge with an IP. During critical penetration tests we now can just plug vmh1 out of the bridge. And regarding packet-
    filters: We do not need to establish firewall-rules on the bridge itself – which has security implications if only done on level 3 – but on an “external” Ethernet device. Note also that the interface “vmh2” could directly be bridged by VMware (if you have more trust in VMware bridges) without producing guest isolation problems as described in a previous article (quoted above).

    Linking of two Linux bridges with each other

    Now, we try to create a link between our 2 Linux bridges. As Linux bridge cascading is forbidden, it is interesting to find out whether at least bridge linking is allowed. We use an additional veth-pair for this purpose:

    mytux:~ # ip link add dev vethb1 type veth peer name vethb2       
    mytux:~ # brctl addif virbr4 vethb1
    mytux:~ # brctl addif virbr4 vethb2
    mytux:~ # brctl show virbr4
    bridge name     bridge id               STP enabled     interfaces
    virbr4          8000.5254007e553d       yes             vethb1
                                                            virbr4-nic
                                                            vmh1
                                                            vnet6
    mytux:~ # brctl show virbr6
    bridge name     bridge id               STP enabled     interfaces
    virbr6          8000.2e424b32cb7d       yes             vethb2
                                                            virbr6-nic
                                                            vnet2
    
    
    mytux:~ # ip link set vethb1 up 
    mytux:~ # ip link set vethb2 up 
    

     
    Note, that the STP protocol is enabled on both bridges! (If you see something different you can manually activate STP via options of the brctl command.)

    Now, can we communicate from “kali3” at “virbr6” over the veth-pair and “virbr4” with the host?
    [Please, check the routes on all involved machines for reasonable entries first and correct if necessary; one never knows …].

    veth10
    and
    veth11

    Yes, obviously we can – and also the host can reach the virtual guest kali3.

    mytux:~ # ping -c4 192.168.50.13
    PING 192.168.50.13 (192.168.50.13) 56(84) bytes of data.
    64 bytes from 192.168.50.13: icmp_seq=1 ttl=64 time=0.259 ms
    64 bytes from 192.168.50.13: icmp_seq=2 ttl=64 time=0.327 ms
    64 bytes from 192.168.50.13: icmp_seq=3 ttl=64 time=0.191 ms
    64 bytes from 192.168.50.13: icmp_seq=4 ttl=64 time=0.287 ms
    
    --- 192.168.50.13 ping statistics ---
    4 packets transmitted, 4 received, 0% packet loss, time 2998ms
    rtt min/avg/max/mdev = 0.191/0.266/0.327/0.049 ms
    

     
    and of course
    veth12

    This was just another example of how we can use veth-pairs. We can link Linux bridges together – and all guests at both bridges are able to communicate with each other and with the host. Good !

    Connecting a virtual VMware bridge to a Linux bridge via a veth-pair

    Our last experiment involves a VMware WS bridge. We could use the VMware Network Editor to define a regular “VMware Host Only Network”. However, the bridge for such a network will automatically be created with an associated, enslaved Ethernet device for and on the host. And the bridge itself would automatically get an IP address – namely 192.168.50.1. There is no way known to me to avoid this – we
    would need to manually eliminate this address afterward.

    So, we take a different road:
    We first create a pair of veth devices – and then bridge (!) one of these veth devices by VMware:

    mytux:~ # ip link add dev vmw1 type veth peer name vmw2
    mytux:~ # brctl link virbr4 vmw1   
    mytux:~ # ip link set vmw1 up
    mytux:~ # ip link set vmw2 up
    mytux:~ # /etc/init.d/vmware restart
    

     
    To create the required VMware bridge to vmw2 we use VMware’s Virtual Network Editor”:

    veth13

    Note that by creating a specific bridge to one of the veth devices we have avoided any automatic IP address assignment (192.168.50.1) to the Ethernet device which would normally be created by VMware together with a host only bridge. Thus we avoid any conflicts with the already performed address assignment to “vmh2” (see above).

    In our VMware guest (hier a Win system) we configure the network device – e.g. with address 192.168.50.21 – and then try our luck:

    veth14

    Great! What we expected! Of course our other virtual clients and the host can also send packets to the VMware guest. I need not show this here explicitly.

    Summary

    veth-pairs are easy to create and to use. They are ideal tools to connect the host and other Linux or VMware bridges to a Linux bridge in a well defined way.

    A remark on DHCP

    Reasonable and precisely defined address assignment to the bridges and or virtual interfaces can become a problem with VMware as well as with KVM /virt-manager or virsh. Especially, when you want to avoid address assignment to the bridges themselves. Typically, when you define virtual networks in your virtualization environment a bridge is created together with an attached Ethernet interface for the host – which you may not really need. If you in addition enable DHCP functionality for the bridge/network the bridge itself (or the related device) will inevitably (!) and automatically get an address like 192.168.50.1. Furthermore related host routes are automatically set. This may lead to conflicts with what you really want to achieve.

    Therefore: If you want to work with DHCP I advise you to do this with a central DHCP service on the Linux host and not to use the DHCP services of the various virtualization environments. If you in addition want to avoid assigning IP addresses to the bridges themselves, you may need to work with DHCP pools and groups. This is beyond the scope of this article – though interesting in itself. An alternative would, of course, be to set up the whole virtual network with the help of a script, which may (with a little configuration work) be included as a unit into systemd.

    Make veth settings persistent

    Here we have a bit of a problem with Opensuse 13.2/Leap 42.1! The reason is that systemd in Leap and OS 13.2 is of version 210 and does not yet contain the service “systemd-networkd.service” – which actually would support the creation of virtual devices like “veth”-pairs during system startup. To my knowledge neither the “wicked” service used by Opensuse nor the “ifcfg-…” files allow for the definition of veth-pairs, yet. Bridge creation and address assignment to existing ethernet devices are, however, supported. So, what can we do to make things persistent?

    Of course, you can write a script that creates and configures all of your required veth-pairs. This script could be integrated in the boot process as a systemd-service to be started before the “wicked.service”. In addition you may
    configure the afterward existing Ethernet devices with “ifcfg-…”-files. Such files can also be used to guarantee an automatic setup of Linux bridges and their enslavement of defined Ethernet devices.

    Another option is – if you dare to take some risks – to fetch systemd’s version 224 from Opensuse’s Tumbleweed repository. Then you may create a directory “/etc/systemd/network” and configure the creation of veth-pairs via corresponding “….netdev”-files in the directory. E.g.:

    mytux # cat veth1.netdev 
    [NetDev]
    Name=vmh1
    Kind=veth
    [Peer]
    Name=vmh2
    

     
    I tried it – it works. However, systemd version 224 has trouble with the rearrangement of Leap’s apparmor startup. I have not looked at this in detail, yet.

    Nevertheless, have fun with veth devices in your virtual networks !

    KVM – Anlegen eines privaten, isolierten Netzwerks mit virt-manager

    Im vorhergehenden Artikel dieses Blogs
    Opensuse – manuelles Anlegen von Bridge to LAN Devices (br0, br1, …) für KVM Hosts
    hatte ich 2 Arten der Anbindung eines KVM-Gastsystems an die physikalische Umwelt des KVM-Hostes diskutiert. Ich hatte angemerkt, dass es unter KVM/libvirt neben einem direkten Bridging zu einer physikalischen Host-NIC natürlich auch die Möglichkeit gibt, KVM-Gäste an ein sog. “Host-Only-Network” [HON] anzubinden. Intern wird dieses Netzwerk durch eine virtuelle Bridge repräsentiert. Soll man aus dem HON heraus mit der physikalischen Umwelt (LAN) kommunizieren, muss man auf dem KVM-Host Routing zwischen einer bereitgestellten virtuellen Host-NIC der Bridge zu einer physikalischen NIC des Hostes ermöglichen. Letztere leitet die Pakete dann ins LAN.

    Unterlässt man das Routing (und/oder filtert man Pakete aus dem HON) auf dem Host, so befinden sich Gastsystem und Host in einem isolierten virtuellen Netz, aus dem nach außen ohne weitere Vorkehrungen nicht kommuniziert werden kann. Dem isolierten Netz können natürlich weitere Gäste beitreten.

    Wegen der Nachfrage einer Leserin, zeige ich nachfolgend kurz die Anlage eines virtuellen Host-Only-Netzwerks unter KVM mittels “virt-manager”. Ich setze voraus, dass der “libvirtd”-Daemon läuft.

    Man ruft als root “virt-manager” auf und geht im Übersichtsfenster auf “Edit >> Connection Details” und dort auf den Reiter “Virtual Networks”. Dort findet man unter der Übersichtsliste zu bereits vorhandenen Netzwerken, einen Button mit einem “+” Symbol zum Anlegen eines neuen Netzwerks. Ich zeige nachfolgend die Dialogsequenz:

    new_network_1

    new_network_2

    new_network_3

    new_network_4

    new_network_5

    Die Bridge und eine zugehörige Host-NIC tauchen dann auch in der Liste der vorhandenen Netzwerk-Devices auf. Unter Opensuse zeigt das Komamndo “wicked show all” dann etwa ein virbr-Device (virtual bridge – im Beispiel ein “virbr2”):

    virbr2          device-unconfigured
          link:     #73, state device-up, mtu 1500
          type:     bridge
          addr:     ipv4 192.168.120.1/24
    
    virbr2-nic      device-unconfigured
          link:     #74, state down, mtu 1500, master virbr2
          type:     tap, hwaddr 52:54:00:c9:bd:24
    

     
    Das neue Netzwerk findet sich dann auch in Form einer XML-Netzwerk-Konfigurations-Datei unter “/etc/libvirt/qemu/networks/host2.xml” wieder:

    <!--
    WARNING: THIS IS AN AUTO-GENERATED FILE. CHANGES TO IT ARE LIKELY TO BE
    OVERWRITTEN AND LOST. Changes to this xml configuration should be made using:
      virsh net-edit host2
    or other application using the libvirt API.
    -->
    
    <network>
      <name>host2&
    lt;/name>
      <uuid>f47c2d04-b1d6-48bf-a6dc-a643d28b38d3</uuid>
      <bridge name='virbr2' stp='on' delay='0'/>
      <mac address='52:54:00:c9:bd:24'/>
      <domain name='host2'/>
      <ip address='192.168.120.1' netmask='255.255.255.0'>
        <dhcp>
          <range start='192.168.120.128' end='192.168.120.254'/>
        </dhcp>
      </ip>
    </network>
    

     
    Will man eine solche Host-Only-Bridge von einem KVM-Gast aus nutzen, so muss man für diesen Gast ein entsprechendes “Netzwerk”-Device (NIC) anlegen, das der Bridge zugeordnet wird. “virt-manager” bietet auch hierfür entsprechende grafische Dialoge an. Ich gehe davon aus, dass eine virtuelle Maschine (z.B. namens “kali2”) bereits existiert. Man öffnet deren Konfigurations-Oberfläche durch Doppelklick auf den entsprechenden Eintrag in der Liste aller KVM-Instanzen unter “virt-manager”. Im sich öffnenden Fenster klickt man weiter auf den Button mit dem “i”-Symbol:

    new_network_6

    Danach taucht das Device auch in der XML-Konfigurationsdatei für den Gast auf – in meinem Beispiel etwa für einen Kali-Gast mit der Datei “/etc/libvirt/qemu/kali.xml” – ich zeige nur den relevanten Ausschnitt:

        <interface type='network'>
          <mac address='52:54:00:0d:3c:8b'/>
          <source network='host2'/>
          <model type='virtio'/>
          <address type='pci' domain='0x0000' bus='0x00' slot='0x0d' function='0x0'/>
        </interface>
    

     
    Danach muss man den Gast neu starten und in ihm natürlich das neu aufgetauchte Netzwerk-Interface manuell konfigurieren – falls man nicht auf DHCP setzt und/oder besondere Einstellungen benötigt. Man merke sich hierzu die MAC-Adresse, um bei mehreren NICs nicht den Überblick zu verlieren! Man achte auch auf das Default-Gateway, wenn Routing über den Host gewünscht ist.

    Achtung: Das neue virtuelle Netzwerk des Gastes ist mit “ifconfig”, “ip” oder “wicked” Kommandos erst als ein “vnetN-Device sichtbar, wenn der Gast gestartet und aktiv ist. Das “N” steht dabei für eine fortlaufende Nummer, die vom System (libvirt) vergeben wird. Z.B. taucht unter “wicked show all” dann ggf. ein Device “vnet3” auf:

    virbr2          device-unconfigured
          link:     #73, state device-up, mtu 1500
          type:     bridge
          addr:     ipv4 192.168.120.1/24
    
    virbr2-nic      device-unconfigured
          link:     #74, state down, mtu 1500, master virbr2
          type:     tap, hwaddr 52:54:00:c9:bd:24
    ...
    ...
    vnet3           device-unconfigured
          link:     #17, state up, mtu 1500, master virbr2
          type:     tap, hwaddr fe:54:00:0d:3c:8b
    

     
    Man beachte, dass sowohl die Host-Nic, als auch das Device des Gastes “tap”-Devices sind. Allg. Infos zu tap-devices finden sich hier:
    https://www.kernel.org/doc/Documentation/networking/tuntap.txt
    https://de.wikipedia.org/wiki/TUN/TAP

    Hinweise für Leser, die die Konfiguration lieber manuell und über die Kommandozeile durchführen mögen

    Wie man eine virtuelle Bridge auf dem KVM-Host mittels des “brctl”-Kommandos einrichtet, benennt und wie man ihr “tap”-Devices zuordnet, habe ich im Prinzip bereits früher am Beispiel einer direkten Bridge zu einem physikalischen Device beschrieben:
    Opensuse – manuelles Anlegen von Bridge to LAN Devices (br0, br1, …) für KVM Hosts
    Siehe aber auch hier:
    http://www.linux-kvm.org/page/Networking#Configuring_Guest_Networking – Abschnitt (Private Network)

    “tap”-Devices kann man manuell und temporär über das Kommando “tunctl” auf dem Host erzeugen.
    Siehe etwa :
    http://unix.stackexchange.com/questions/86720/can-i-create-a-virtual-ethernet-interface-named-eth0
    http://serverfault.com/questions/347895/creating-tun-tap-devices-on-linux
    http://www.naturalborncoder.com/virtualization/2014/10/17/understanding-tun-tap-interfaces/
    http://blog.elastocloud.org/2015/07/qemukvm-bridged-network-with-tap.html

    Die Zuordnung von “tap”-Devices zu einer virtuellen Linux-Bridge erfolgt über das “brctl addif”-Kommando. Nun fehlt also nur noch eine Methode, um einmal erzeugte “tap”-Devices in die Konfiguration eines Gastes einzubinden.

    Ich kenne einige Leute, die starten ihre virtuellen Maschinen lieber eigenhändig und über Scripts statt über virt-manager. Dann kann die Netzwerk-Konfiguration des Gastsystems in Form passender Optionsparameter des Kommandos “qemu-system-x86_64” (mit weiteren Optionen für KVM-Unterstützung; s.u.) oder des Kommandos “qemu-kvm” zum Starten eines KVM-Gastes geschehen. Eine Übersicht über diese Möglichkeit findet man hier:
    http://qemu-buch.de/de/index.php?title=QEMU-KVM-Buch/_Netzwerkoptionen/_Virtuelle_Netzwerke_konfigurieren
    In abgekürzter Form auch hier :
    https://bbs.archlinux.org/viewtopic.php?pid=1148335#p1148335
    https://bbs.archlinux.org/viewtopic.php?pid=1424044#p1424044

    Eine weitere Alternative ist hier beschrieben (s. den Abschnitt zu “Private Networking”):
    http://www.linux-kvm.org/page/Networking#Configuring_Guest_Networking

    Übrigens: “qemu-kvm” ist auf aktuellen Linux-Systemen meist nur ein kleines Shell-Script-Kommando, dass “qemu-system-x86_64” mit KVM-Hardware-Unterstützungsoptionen aufruft! Siehe zum Unterschied zw. “qemu-system-x86_64” und “qemu-kvm” etwa
    http://www.linux-kvm.com/content/qemu-kvm-or-qemu-system-x8664%EF%BC%9F).
    Die Optionen des “qemu-kvm”-Kommandos sind z.B. hier beschrieben:
    https://www.suse.com/documentation/sles11/book_kvm/data/cha_qemu_running_gen_opts.html
    Eine Zusammenfassung zu tap-Devices und verschiedenen Bridging-Varianten gibt auch
    https://www.suse.com/documentation/sles11/book_kvm/data/cha_qemu_running_networking.html

    Will man die Tools von “libvirt/virt-manager” zum Starten der virtuellen Maschine benutzen, dann kann die “manuelle” Definition von virtuellen NICs für einen KVM-Gastes aber auch mittels des “virsh edit”-Kommandos zur Manipulation des XML-Files für die
    Gastkonfiguration durchgeführt werden.
    Siehe:
    http://serverfault.com/questions/665440/set-up-network-interfaces-in-ubuntu-for-kvm-virtual-machine

    In einigen Situationen kann es auch erforderlich sein, den Gast im laufenden Betrieb um ein Netzwerkinterface zu einem neu definierten virtuellen Netz zu erweitern. Informationen hierzu findet man hier:
    http://www.linuxwave.info/2014/12/hot-attach-and-hot-detach-network.html
    https://kashyapc.fedorapeople.org/virt/add-network-card-in-guest.txt