Autoencoders and latent space fragmentation – IX – PCA transformation of the z-point distribution for CelebA

This series of posts is about standard convolutional Autoencoders [AEs]. We wish to use the creative ability of an AE’s Decoder for the creation of human face images. We trained a relatively simple example AE on the CelebA data set. For the generation of new human face images we wanted to feed the Decoder with randomly created z-vectors in the AE’s latent space. As arbitrary latent vectors did not deliver reasonable images, we had a look at properties of the z-point distribution created in the latent space after training. And we found the z-vectors with end-points within this particular region indeed gave us some first reasonable images.

But during the first posts we also had to learn that it requires substantial effort to produce “randomly” created z-vectors which point to the coherent and confined latent space region populated by z-points for CelebA images. In addition we found that we obviously must fulfill complex correlation conditions between the latent vector components. In the last posts we have, therefore, investigated the structure of the latent space region populated for CelebA images a bit more closely. See:

Autoencoders and latent space fragmentation – VIII – approximation of the latent vector distribution by a multivariate normal distribution and ellipses

Autoencoders and latent space fragmentation – VII – face images from statistical z-points within the latent space region of CelebA

This gave us a somewhat surprising insight:

For our special case of human face images the density distribution of the z-points in the multidimensional latent space roughly resembled a multivariate normal distribution. The variables of this distribution were, of course, the components of the latent z-vectors (reaching from the origin of the latent space coordinate system to the z-points). The number density distributions for the values of the z-vector components could very well be approximated by Gaussian functions. In addition we found strong linear correlations between the z-vector components. This was completely consistent with diagonally oriented elliptic contour lines of the number density distribution for pairs of z-vector components in the respective coordinate planes. The angles between the ellipses’ axes and the axes of the (orthogonal) coordinate system varied.

In this post we test my thesis of a multivariate normal distribution in a different and more complicated way. If the number density distribution of the z-points for CelebA really is close to a multivariate normal distribution then we would expect that the contour lines of the 2-dimensional number density function for coordinate planes still are ellipses after a PCA transformation. Note that the coordinate planes then are planes of a new coordinate system (with orthogonal axes) moved and rotated with respect to the original coordinate system. We call the transformed coordinate system the “PCA coordinate system“. (It is clear the vector components must consistently be transformed with respect to the new coordinate axes.)

This test is much harder because asymmetries, imperfections and deviations from a normal distribution will become clearly visible. Nevertheless we shall see that the z-point distribution decomposes roughly in uncorrelated Gaussian number density (or probability) functions for the (transformed) components of the z-vectors – as expected.

Note that number density distributions can be interpreted as probability distributions after a proper normalization. To understand the results and implications of this post some basic knowledge about multivariate normal probability density distributions in multidimensional spaces is required. Transformation properties of such distributions are important. In particular the effect of a PCA or SVD transformation, which diagonalizes the Pearson correlation matrix, on a multivariate normal distribution, should be familiar: In the moved and rotated coordinate system original linear correlations between vector components disappear. The coordinate axes of the transformed coordinate system get aligned to the eigenvectors (and main axes) of the probability density distribution. In addition elliptic contour lines prevail and the main axes of the ellipses get aligned with the axes of the PCA coordinate system.

For valuable information in previous posts see the link list a the bottom of this article.

Imperfections in the multivariate normal distribution and their consequences for PCA

In our case the latent space had 256 dimensions. The real number density functions for the values of the (256) latent vector components did not always show the full symmetry of their Gaussian fits. Deviations appeared near the center and at the flanks of the individual distributions. Still we got convincing overall ellipses in contour plots of the probability density for selected pairs of components. But there were also relatively many points which lay in regions outside the 2 to 3 sigma confidence ellipses for these 2-dimensional distributions – and the distribution of the points there seemed to violate the elliptic symmetry.

A perfect multivariate normal distribution (with only linear correlations between its variables) decomposes into (seemingly) uncorrelated normal distributions for the new variables, namely the latent vector components in the transformed coordinate system of the latent space. The coordinate transformation corresponds to a diagonalization of the Pearson correlation matrix via finding orthogonal eigenvectors. So we should not only get ellipses after the PCA transformation. The main axes of the resulting ellipses should also be aligned with the coordinate axes of the new translated and rotated PCA coordinate system. (This is a standard feature of “uncorrelated” Gaussians).

Note that the de-correlation is a pure coordinate effect which does not eliminate the dependencies of the original variables. The new coordinates and the respective variables do not have the same meaning as the old ones. We “only” change perspectives such that the mathematical description of the multivariate distribution gets simpler. However, the ratios of the axes of the new ellipses depend on the axis-ratios of the old ellipses in the original standard coordinate system of the latent space.

When we translate and rotate a coordinate system to diagonalize the Pearson matrix of an imperfect multivariate normal distribution the coordinate axes may afterward not fully align with the main axes of the distribution’s inner core – and then we might get clearly visible asymmetries in z-point projections to coordinate planes. Note that points outside the inner core have a relatively large impact on the PCA transformation and especially on the rotation of the new axes with respect to the old ones.

Reduction of outer z-point contributions

Outer z-points often correspond to CelebA images with strong variations in the background. As these z-points have a large distance from the center of the distribution they have a heavy impact on a PCA transformation to eigenvectors of the Pearson matrix. Therefore, I eliminated some outer points from the distribution. I did this by deleting points with coordinate values smaller or bigger than a symmetric threshold in the outer flanks of the 256 Gaussian distributions – e.g.:

z_j < mu_j – fact * FHWM and z_j > mu_j + fact * FHWM.

With FHWM meaning the full width at the half maximum and mu_j being the center of the approximate Gaussian for the j-th vector component of the z-vectors. I tried multiple values of fact between 1.7 and 1.25.

One has to be careful with such an elimination process. Even though we set our limits beyond the 2 σ-level of the individual Gaussians ahead of the transformation, a step-wise consecutive elimination for all components reduces the number of surviving vectors significantly for small values of fact. The plots below correspond to a value of fact = 1.7 (with one discussed exception). This reduced the number of available vectors from originally 170.000 used during the AE’s training to 160.000. From this distribution a random sub-selection of 80,000 z-points was taken to perform the PCA transformation. I call the resulting sample of z-points the “reduced distribution” below. The results did not change much for a sub-selection of more points. The second reduction saved me some CPU-time, however.

PCA transformation of the z-point distribution – explained variance and cumulative importance

Below you see the explained variance ratio of the first 40 and the cumulative importance of the first 120 main components after a PCA transformation of the reduced z-point distribution. (The PCA-algorithm was based on the SVD-algorithm, as provided by the sklearn-package.)

We see that we need around 120 PCA components to explain 80% of the variance of the original z-point data. The contribution of the first 15 components is significant, but it is NOT really dominant. Interesting is also the step-wise decline of the first 10 components in a not so smooth curve.

I have in addition checked that the normalized Pearson correlation coefficient matrix was perfectly diagonalized. All off-diagonal values were smaller than 2.e-7 (which is consistent with error propagation) and the diagonal elements were 1.0 with an accuracy better than 8 eight digits after the decimal point. As it should be.

Gaussians per PCA-vector component?

We expect Gaussian number density functions for each of the z-vector components after the PCA coordinate transformation. The following line plots show the number density distributions (colored line) and a related Gaussian fit (dashed lines) per named vector-components after PCA-transformation. The first plot gives an overview over 120 PCA components:

We see that all distributions look similar to Gaussians. In addition the center of the distributions for all components are very close to or coincide with the origin of the PCA coordinate system. This is something we would expect for an original multivariate normal distribution before the PCA transformation to a new moved and rotated coordinate system: An affine transformation between coordinate systems with orthogonal axes maps Gaussians to Gaussians.

Components 0 and 1:

Components 2 and 3:

Components 4 and 5:

Components 6 and 7:

Components 8 and 9:

We see from these plots that component 3 shows values at the distributions’s flanks well above the values of its Gaussian fit. This may lead to deformed ellipses. In addition component 7 shows a slight asymmetry – probably triggering deviations both at the center and outer regions. Similar effects can be seen for other higher components – but not so pronounced. The chosen sampling interval (0.5) in the new coordinates did smear out small asymmetric wiggles in all distributions.

Ellipses?

Calculating approximate contour lines is CPU intensive. On my presently available laptop I had to focus on some selected examples for pairs of components of z-vectors in the transformed coordinate system. Experiments showed that the most critical components with respect to asymmetries were 2, 3, 7, 8.

Let us first look at combinations of the first 9 PCA components (0) with other components in the range between the 10th and 120th PCA component. Just scroll down to see more images:

The fatter lines represent confidence ellipses derived both from correlation data, i.e. elements of the normalized correlation coefficient matrix, and properties of the Gaussian distributions. See the last blog for details on the method of getting confidence ellipses from data of a probability distribution.

Ellipses for density distributions in coordinate planes for pars of the most important PCA components

Before you think that everything is just perfect we should focus on the most important 10 PCA components and their mutual pair-wise density distributions. We expect trouble especially for combinations with the components 2, 3 and 7.

Component 0 vs other components < 10

We see already here that asymmetries in the density distributions which appear relatively small in the gaussian-like curves per component leave their imprint on the elliptic curves. The contour lines are not always centered with respect to the overall confidence ellipses.

Component 1 vs other components < 10

Component 2 vs other components < 10

The plot for components 2 and 3 was based on fact = 1.35 instead of fact = 1.7. See a section below for more information.

Component 3 vs other components < 10

Component 4 vs other components < 10

Component 5 vs other components < 10

Component 6 vs other components < 10

Component 7 vs other components < 10

Component 8 vs other components < 10

Component 9 vs other components < 10

Ellipses for other seected component pairs

Comments

The z-point distribution is rather close to a multivariate normal distribution, but it is not perfect. The PCA transformation revealed clearly that the center of the overall z-point distribution does not completely coincide with the centers of the individual density distributions for the z-vector components. And not all individual curves are fully symmetrical. Some plots show the expected ellipses, but not fully centered. We also see signs of non-linear correlations as not all ellipses show a complete alignment with the axes of the PCA coordinate system.

The impact of outer z-points becomes obvious when we compare plots for the component pair (2, 3) for different values of fact. The plots are for fact = 1.35, 1.45, 1.55, 1.7 and fact = 1.8 (in this order from left to right and downward). (Regarding z-point elimination the fact-values correspond to 122000, 138000, 149000, 159000 and 164000 remaining z-points.)

The flips in the left-right orientation between some of the plots can be ignored. They depend on random aspects of the transformations and plotting routines used.

We see that z-points (for some some strange images) which have a large distance from the center of the distribution have a major impact on the central density distribution. 10% of the outer points influence the orientation of the central ellipses by their coordinates – although these outer points are not part of the inner core of the distribution.

BUT: Overall we find the effect we wanted to see. The elliptic contours are clearly visible and most of them are aligned with the axes of the PCA coordinate system and the main axes of the confidence ellipses for the z-point distribution in the PCA coordinate system. The inner core is aligned with the axes of the coordinate system even for the critical PCA components 2 and 3, when we omit between 12% and 25% of the points (outside a 3 σ-level).

This means: The PCA transformation confirms that an inner core of the z-point distribution is well described by a multivariate normal distribution – with linear correlations between the number density distributions for various components.

This is an interesting finding by itself.

Conclusion

The last and the present post of this series have shown that a convolutional AE maps human face images of the CelebA data set to a multivariate normal distribution in its multidimensional latent space. Although this is interesting by itself we must not forget our ultimate goal – namely to generate random z-vectors which should deliver us reasonably human face images by the AE’s Decoder. But the results of our analysis provide solid criteria to generate such vectors fulfilling complex correlation conditions.

We can now define statistical generation methods which restrict the components of our aspired random z-vectors such that the resulting z-points lie within regions surrounded by confidence ellipses of the multivariate normal distribution. One such method is the topic of the next post.

Autoencoders and latent space fragmentation – X – a method to create suitable latent vectors for the generation of human face images

Links to other posts of this series

Autoencoders and latent space fragmentation – VIII – approximation of the latent vector distribution by a multivariate normal distribution and ellipses

Autoencoders and latent space fragmentation – VII – face images from statistical z-points within the latent space region of CelebA

Autoencoders and latent space fragmentation – VI – image creation from z-points along paths in selected coordinate planes of the latent space

Autoencoders and latent space fragmentation – V – reconstruction of human face images from simple statistical z-point-distributions?

Autoencoders and latent space fragmentation – IV – CelebA and statistical vector distributions in the surroundings of the latent space origin

Autoencoders and latent space fragmentation – III – correlations of latent vector components

Autoencoders and latent space fragmentation – II – number distributions of latent vector components

Autoencoders and latent space fragmentation – I – Encoder, Decoder, latent space

 

Autoencoders and latent space fragmentation – VII – face images from statistical z-points close to the latent space region of CelebA

I continue with my analysis of the z-point and latent vector distribution a trained Autoencoder creates in its latent space for CelebA images. These images show human faces. To make the Autoencoder produce new face images from statistically generated latent vectors is a problem. See some previous posts in this series for reasons.

Autoencoders and latent space fragmentation – I – Encoder, Decoder, latent space
Autoencoders and latent space fragmentation – II – number distributions of latent vector components
Autoencoders and latent space fragmentation – III – correlations of latent vector components
Autoencoders and latent space fragmentation – IV – CelebA and statistical vector distributions in the surroundings of the latent space origin
Autoencoders and latent space fragmentation – V – reconstruction of human face images from simple statistical z-point-distributions?

These problems are critical for a generative usage of standard Autoencoders. Generative tasks in Machine Learning very often depend on a clear and understandable structure of the latent space regions an Encoder/Decoder pair uses. In general we would like to create statistical latent vectors such that a reasonable object creation (here: image creation) is guaranteed. In the last post

Autoencoders and latent space fragmentation – VI – image creation from z-points along paths in selected coordinate planes of the latent space

we saw that we at least get some clear face features when we make use of some basic information about the shape and location of the z-point distribution for the images the AE was trained with. This distribution is specific for an Autoencoder, the image set used and details of the training run. In our case the z-point distribution could be analyzed by rather simple methods after the training of an AE with CelebA images had been concluded. The number distribution curves per vector component revealed value limits per latent vector component. The core of the z-point distribution itself appeared to occupy a single and rather compact sub-volume inside the latent space. (The exact properties depend on the AE’s layer structure and the training run.) Of the N=256 dimensions of our latent space only a few determined the off-origin position of the center of the z-point distribution’s core. This multidimensional core had an overall ellipsoidal shape. We could see this both from the Gaussian like number distributions for the components and more directly from projections onto 2-dimensional coordinate planes. (We will have a closer look at these properties which indicate a multivariate normal distribution in forthcoming posts.)

As long as we kept the statistical values for artificial latent vector components within the value ranges set by the distribution’s core our chances that the AE’s Decoder produced images with new and clearly visible faces rose significantly. So far we have only used z-points along defined paths crossing the distributions core. In this post I will vary the components of our statistically created latent vectors a bit more freely. This will again show us that correlations of the vector components are important.

Constant probability for each component value within a component specific interval

In the first posts of this series I naively created statistical latent vectors from a common value range for the components. We saw this was an inadequate approach – both for general mathematical and for problem specific reasons. The following code snippets shows an approach which takes into account value ranges coming from the Gaussian-like distributions for the individual components of the latent vectors for CelebA. The arrays “ay_mu_comp” and “ay_mu_hw” have the following meaning:

  • ay_mu_comp: Component values of a latent vector pointing to the center of the CelebA related z-point distribution
  • ay_mu_hw: Half-width of the Gaussian like number distribution for the component specific values
num_per_row  = 7
num_rows     = 3
num_examples = num_per_row * num_rows

fact = 1.0

# Get component specific value ranges into an array 
li_b = []
for j in range(0, z_dim):  
    add_val = fact*abs(ay_mu_hw[j])
    b_l = ay_mu_comp[j] - add_val
    b_r = ay_mu_comp[j] + add_val
    li_b.append((b_l, b_r))
    
# Statistical latent vectors
ay_stat_zpts = np.zeros( (num_examples, z_dim), dtype=np.float32 )     
for i in range(0, num_examples): 
    for j in range(0, z_dim):
        b_l = li_b[j][0]
        b_r = li_b[j][1]
        val_c = np.random.uniform(b_l, b_r) 
        ay_stat_zpts[i, j] = val_c

# Prediction 
reco_img_stat = AE.decoder.predict(ay_stat_zpts)
# print("Shape of reco_img = ", reco_img_stat.shape)

The main difference is that we take random values from real value intervals defined per component. Within each interval we assume a constant probability density. The factor “fact” controls the width of the value interval we use. A small value covers the vicinity of the center of the CelebA z-point distribution; a larger fact leads to values at the border region of the z-point distribution.

Image results for different value ranges

fact=0.4

fact=0.5

fact=0.6

fact=0.7

fact=0.8

fact=0.9

fact=1.0

Selected individuals

Below you find some individual images created for a variety of statistical vectors. They are ordered by a growing distance from the center of the CelebA related z-point distribution.

Quality? Missing correlations?

The first thing we see is that we get problems for all factors fact. Some images are OK, but others show disturbances and the contrasts of the face against the background are not well defined – even for small factors fact. The reason is that our random selection ignores correlations between the components completely. But we know already that there are major correlations between certain vector components.

For larger values of fact the risk to place a generated latent vector outside the core of the CelebA z-point distribution gets bigger. Still some images interesting face variations.

Obviously, we have no control over the transitions from face to hair and from hair to background. Our suspicion is that micro-correlations of the latent vector components for CelebA images may encode the respective information. To understand this aspect we would have to investigate the vicinity of a z-point a bit more in detail.

Conclusion

We are able to create images with new human faces by using statistical latent vectors whose component values fall into component specific defined real value intervals. We can derive the limits of these value ranges from the real z-point distribution for CelebA images of a trained AE. But again we saw:

One should not ignore major correlations between the component values.

We have to take better care of this point in a future post when we perform a transformation of the coordinate system to align with the main axes of the z-point distribution. But there is another aspect which is interesting, too:

Micro-correlations between latent vector components may determine the transition from faces to complex hair and background-patterns.

We can understand such component dependencies when we assume that the superposition especially of small scale patterns a convolutional Decoder must arrange during image creation is a subtle balancing act. A first step to understand such micro-correlations better could be to have a closer look at the nearest CelebA z-point neighbors of an artificially created latent z-point. If they form some kind of pattern, then maybe we can change the components of our z-point a bit in the right direction?

Or do we have to deal with correlations on a much coarser level? What do the Gaussians and the roughly elliptic form of the core of the z-point distribution for CelebA images really imply? This is the topic of the next post.

Autoencoders and latent space fragmentation – VIII – approximation of the latent vector distribution by a multivariate normal distribution and ellipses

 

Autoencoders and latent space fragmentation – V – reconstruction of human face images from simple statistical z-point-distributions?

In this post series we have so far studied the distribution of latent vectors and z-points for CelebA images in the latent space of an Autoencoder [AE]. The CelebA images show human faces. We want to reconstruct images with new faces from artificially created, statistical latent vectors. Our latent space had a number dimensions N=256. For basics of Autoencoders, terms like latent space, z-points, latent vectors etc. see the first blog of this series:

Autoencoders and latent space fragmentation – I – Encoder, Decoder, latent space

During the experiments and analysis discussed in the other posts

Autoencoders and latent space fragmentation – II – number distributions of latent vector components
Autoencoders and latent space fragmentation – III – correlations of latent vector components
Autoencoders and latent space fragmentation – IV – CelebA and statistical vector distributions in the surroundings of the latent space origin

we have learned that the multi-dimensional latent space volume which the Encoder of a convolution AE fills densely with z-points for CelebA images has a special shape and location. The bulk of z-points is confined to a multi-dimensional ellipsoid which is relatively small. Its center has a position, which does not coincide with the latent space’s origin. The bulk center is located within or very close to a hyper-sub-volume spanned by only a few coordinate axes.

We also saw also that we have difficulties to hit this region by artificially created z-points via latent vectors. Especially, if the approach for statistical vector generation is a simple one. In the beginning we had naively assumed that we can treat the vector components as independent variables. We assigned each vector component values, which we took from a value-interval [-b, b] with a constant probability density. But we saw that such a simple and seemingly well founded method for statistical vector creation has a variety of disadvantages with respect to the bulk distribution of latent vectors for CelebA images. To name a few problems:

  • The components of the latent vectors for CelebA images are correlated and not independent. See the third post for details.
  • If we choose b too large (&gt. 2.0) then the length or radius values of the created vectors will not fit typical radii of the CelebA vectors. See the 2nd post for details.
  • The generated vectors only correspond to z-points which fill parts of a thin multi-dimensional spherical shell within the cube filled by points with coordinate values -b < x_j < +b. This is due to mathematical properties of the distribution in multi-dimensional spaces. See the second post for more details.
  • Optimal parameter values are 1.0 < b < 2.0, just to guarantee at least the right vector length. However, due to the fact that the origin of the latent space is located in a border region of the CelebA bulk z-point distribution, most points will end up outside the bulk volume.

In this post I will show you that our statistical vectors and the related z-points do indeed not lead to a successful reconstruction of images with clearly visible human faces. Afterward I will briefly discuss whether we still can have some hope to create new human face images by a standard AE’s Decoder and statistical points in its latent space.

Relevant values of parameter b for the interval from which we choose statistical values for the vector components

What does the number distribution for the length of latent CelebA vectors look like? For case I explained in the 2nd post of this series we get:

For case II:

Now let me remind you of a comparison with the lengths of statistical vectors for different values of b:

See the 2nd post of this series for more details. Obviously, for our simple generation method used to create statistical vectors a parameter value b = 1.5 is optimal. b=1.0 an b=2.0 mark the edges of a reasonable range of b-values. Larger or smaller values will drive the vector lengths out of the required range.

Image reconstructions for statistical vectors with independent component values x_j in the range -1.5 < x_j < 1.5

I created multiples of 512 images by feeding 512 statistical vectors into the Decoder of our convolutional Autoencoder which was trained on CelebA images (see the 1st and the 2nd post for details). The vector components x_j fulfilled the condition :

-1.5 ≤   x_j   ≤ 1.5,    for all j in [0, 256]

The result came out to be frustrating every time. Only singular image showed like outlines of a human face. The following plot is one example out of series of tenths of failures.

And this was an optimal b-value! 🙁 But due to the analysis of the 4th post in this series we had to expect this.

Image reconstructions for statistical vectors with independent component values x_j in the range -1.0 < x_j < 1.0

The same for

-1.0 ≤   x_j   ≤ 1.0,    for all j in [0, 256]

Image reconstructions for statistical vectors with independent component values x_j in the range -2.0 < x_j < 2.0

The same for

-2.0 ≤   x_j   ≤ 2.0,    for all j in [0, 256]

Image reconstructions for statistical vectors with independent component values in the range -5.0 < x_j < 5.0

If you have read the previous posts in this series then you may think: Some of the component values of latent vectors for CelebA images had bigger values anyway. So let us try:

-1.0 ≤   x_j   ≤ 1.0,    for all j in [0, 256]

And we get:

Although some component values may fall into the value regions of latent CelebA vectors most of them do not. The lengths (or radii) of the statistical vectors for b=5.0 do not at all fit the average radii of latent vectors for CelebA images.

What should we do?

I have described the failure to create reasonable images from statistical vectors in some regions around the origin of the latent space also in other posts on standard Autoencoders and in posts on Variational Autoencoders [VAEs]. For VAEs one enforces that regions around the origin are filled systematically by special Encoder layers.

But is all lost for a standard Encoder? No, not at all. It is time that we begin to use our knowledge about the latent z-point distribution which our AE creates for CelebA images. As I have shown in the 2nd post it is simple to get the number distribution for the component values. Because these distributions were similar to Gaussians we have rather well defined value regions per component which we can use for vector creation. I.e. we can perform a kind of first order approximation to the main correlations of the components and thus put our artificially created values inside the densely populated bulk of the z-point region for CelebA images. If that region in the latent space has a meaning at all then we should find some interesting reconstruction results for z-points within it.

We can do this even with our simple generation method based on constant probability densities, if we use individual value regions -b_j ≤ x_j ≤ b_j for each component. (Instead of a common value interval for all components). But even better would be Gaussian approximations to the real number distributions for the component values. In any case we have to restrict the values for each component much stronger than before.

Conclusion

What we already had expected from previous analysis became true. A simple method for the creation of statistical latent vectors does not give us z-points which are good for the creation of reasonable images by a trained AE’s Decoder. The simplifications

  1. that we can treat the component values of latent vectors as independent variables
  2. and that we can assign the components x_j values from a common interval -b ≤ x_j &le b

cause that we miss the bulk region in the AE’s latent space, which gets filled by its trained Encoder. We have demonstrated this for the case of an AE which had been trained on images of human faces.

In the next post

Autoencoders and latent space fragmentation – VI – image creation from z-points along paths in selected coordinate planes of the latent space

I will show that even a simple vector creation can give us latent vectors within the region filled for CelebA images. And we will see that such points indeed lead to the reconstruction of images with clearly visible human face images by the Decoder of a standard AE trained on the CelebA dataset.