Variational Autoencoder with Tensorflow 2.8 – XII – save some VRAM by an extra Dense layer in the Encoder

I continue with my series on Variational Autoencoders [VAEs] and related methods to control the KL-loss.

Variational Autoencoder with Tensorflow 2.8 – I – some basics
Variational Autoencoder with Tensorflow 2.8 – II – an Autoencoder with binary-crossentropy loss
Variational Autoencoder with Tensorflow 2.8 – III – problems with the KL loss and eager execution
Variational Autoencoder with Tensorflow 2.8 – IV – simple rules to avoid problems with eager execution
Variational Autoencoder with Tensorflow 2.8 – V – a customized Encoder layer for the KL loss
Variational Autoencoder with Tensorflow 2.8 – VI – KL loss via tensor transfer and multiple output
Variational Autoencoder with Tensorflow 2.8 – VII – KL loss via model.add_loss()
Variational Autoencoder with Tensorflow 2.8 – VIII – TF 2 GradientTape(), KL loss and metrics
Variational Autoencoder with Tensorflow 2.8 – IX – taming Celeb A by resizing the images and using a generator
Variational Autoencoder with Tensorflow 2.8 – X – VAE application to CelebA images
Variational Autoencoder with Tensorflow 2.8 – XI – image creation by a VAE trained on CelebA

After having successfully trained a VAE with CelebA data, we have shown that our VAE can afterward create images with human-like looking faces from statistically selected data points (z-points) in its latent space. We still have to analyze the confinement of the z-point distribution due to the KL-loss a bit in more depth. But before we turn to this topic I want to briefly discuss an option to reduce the VRAM requirements of the VAE’s Encoder.

Limited VRAM – a problem for ML training runs on older graphics cards

In my opinion exploring the field of Machine Learning on a PC should not be limited to people who can afford a state of the art graphics card with a lot of VRAM. One could use Google’s Colab – but … I do not want to go into tax and personal data politics here. I really miss an EU-wide platform that offers services like Google Colab.

Anyway, a reduction of VRAM consumption may be decisive to be able to perform training runs for CNN-based VAEs on older graphic cards . Not only concerning VRAM limits but also regarding computational time: The less VRAM the weight parameters of our VAE models require the bigger we can size the batches the GPU operates on and the more CPU time we may potentially save. At least in principle. Therefore, we should consider the amount of trainable parameters of a neural network model and reduce them if possible.

The number of parameters depends heavily on the connections to the mu and logvar-layer of the Encoder

When you print out the layer structure and related parameters of a VAE (see below) you will find that the Encoder requires more parameters than the Decoder. Around twice as many. A closer look reveals:

It is the transition from the convolutional part of the Encoder to its Dense layers for mu and logvar which plays an important role for the number of weight parameters.

For a layer structure comprising 4 Conv2D layers, related filters=(32,64,128,256) and an input image size of (96,96,3) pixels we arrive at a Flatten-layer of 9216 neurons at the end of the convolutional part of the Encoder. For z_dim = 512 the direct connections from the Flatten-layer to both the mu- and logvar-layers lead to more the 9.4 million (float32) parameters for the Encoder. This is the absolutely dominant part of all required 9.83 million parameters of the Encoder. In contrast the Decoder part requires a total of 5.1 million parameters, only.



This is due to the fact that the flattened layer supplies input to two connected layers before output is created by yet another layer. In the Decoder, instead, only one layer, namely the input layer is connected to the flattened layer ahead of the first Conv2DTranspose layer.

In the case of z_dim=256 we arrive at around half of the parameters, i.e. 4.9 million parameters for the Encoder and around 2.76 million for the Decoder.

It is obvious that the existence of two layers for the variational parameters inside the Encoder is the source of the high parameter number on the Encoder side.

Would a reduction of convolutional layers help to reduce the weight parameters?

A reduction of Conv2D-layers in the Encoder would of course reduce the parameters for the weights between the convolutional layers. But turning to only three convolutional layers whilst keeping up a stride value of stride=2 for all filters would raise the already dominant number of parameters after the flattened layer by a factor of 4!

So, one has to work with a delicate balance between the number of convolutional layers and the eventual number of maps at the innermost layer and the size of these maps. They determine the number of neurons and related weights on the flattening layer:

From the perspective of a low total number of parameters you should consider higher stride values when reducing the number of Conv2D-layers.

On the other hand side using more than 4 convolutional layers would reduce the resolution of the maps of the innermost Conv2D layer below a usable threshold for reasonable mu and logvar values.

Off topic remark: All in all it seems to be reasonable also to think about ResNets of low depth instead of plain CNNs to keep weight numbers under control.

An intermediate dense layer ahead of the mu- and logvar-layers of the Encoder?

The reader who followed the posts in this series may have looked at the recipe which F. Chollet has discussed in his Keras documentation on VAEs. See: examples/ generative/vae/.

There is an element in Chollet’s Encoderstructure which one easily can overlook at first sight. In his example for the MNIST dataset Chollet adds an intermediate Dense layer between the Flatten-layer and the layers for mu and logvar.

x = layers.Flatten()(x)
x = layers.Dense(16, activation="relu")(x)
z_mean = layers.Dense(latent_dim, name="z_mean")(x)
z_log_var = layers.Dense(latent_dim, name="z_log_var")(x)

In the special case of MNIST an intermediate layer seems appropriate for bridging the gap between an input dimension of 784 to z_dim = 2. You do not expect major problems to arise from such a measure.

But: This intermediate layer introduced by Chollet also has the advantage of reducing the total number of trainable parameters substantially.

We could try something similar for our network. But here we have to be a bit more careful as we work in a latent space of much higher dimensions, typically with z_dim >= 256. Here we are in dilemma as we want to keep the intermediate dimension relatively high for using as much information as possible coming from the maps of the last Conv2D-layers. A fair compromise seems to be to use at least the dimension of the mu and varlog-layers, namely z_dim.

For z_dim=256 an additional Dense layer of the same size would reduce the total number of Encoder parameters from 5.11 million to 2.88 million.

If we took the dimension of the intermediate layer to be 384 we would still go down with the total Encoder parameters to 4.13 million. So an additional Dense layer really saves us some VRAM.

Images constructed by a VAE model with an additional Dense layer in the Encoder

Will an additional dense layer have a negative impact on our VAE’s ability to create images from randomly chosen z-points in the latent space?

Let us try it out. To include an option for an additional Dense layer in the Encoder related part of our class “MyVariationalAutoencoder()” is a pretty simple task. I leave this to the reader. Note that if we choose the dimension of the additional Dense layer to be exactly z_dim there is no need to change the reconstruction logic and layer structure of the Decoder. Also for other choices for the size of the Dense layer I would refrain from changing the Decoder.

I used z_dim=256 for the extra layer’s size. Then I repeated the experiments described in my last post. Some results for random z-points picked from a normal distribution in all coordinates are shown below:

So we see that from the generative point of view an extra Dense layer does not hurt too much.

What have we gained?

First and foremost:

We found a simple method to reduce the VRAM consumption of the Encoder.

But I have to admit that this method did NOT save any GPU time during training as long as I kept the size of image batches equally big as before (128). The reason is:

Due to the extra layer more matrix operations have to be performed than before, although some of matrixes becae smaller. On my old graphics card a full epoch with 170,000 (96×96) images takes around 120 secs – with or without an extra Encoder layer. Unfortunately, increasing the size of the batches the DataImageGenerator feeds into the GPU from 128 images to 256 did not change the required GPU time very much. More tests showed that a size of 128 already gave me an optimal turnaround time per epoch on my old graphics card (960 GTX).


An extra intermediate Dense layer between the Flatten-layer and the mu- and logvar-layers of the Encoder can help us to save some VRAM during the training of a VAE. Such a layer does not lead to a visible reduction of the quality of VAE-generated images from randomly selected points in the latent-space.

In the next post of this series
Variational Autoencoder with Tensorflow 2.8 – XIII – Does a VAE with tiny KL-loss behave like an AE? And if so, why?
we will compare a VAE with only a tiny contribution of KL-loss to the total loss with a corresponding AE. We shall investigate their similarity regarding their z-point distributions. This will give us a solid basis to investigate the impact of higher KL-loss values on the latent space in more detail afterwards.

Variational Autoencoder with Tensorflow 2.8 – V – a customized Encoder layer for the KL loss

I continue with my series on the treatment of the KL loss of Variational Autoencoders in a Keras / TF2.8 environment:

Variational Autoencoder with Tensorflow 2.8 – I – some basics
Variational Autoencoder with Tensorflow 2.8 – II – an Autoencoder with binary-crossentropy loss
Variational Autoencoder with Tensorflow 2.8 – III – problems with the KL loss and eager execution
Variational Autoencoder with Tensorflow 2.8 – IV – simple rules to avoid problems with eager execution

In the last post it became clear that it might be a good idea to delegate the KL loss calculation to a specific layer within the Encoder model. In this post I discuss the code for such a solution. I am going to encapsulate the construction of a suitable Keras model for the VAE in a class. The class will in further posts be supplemented by more methods for different approaches compatible with TF2.x and eager execution.

The code’s structure has been influenced by the work or books of several people which I want to name explicitly: D. Foster, F. Chollet and Louis Tiao. See the references in the last section of this post.

For the data sets I later want to work with both the Encoder and the Decoder parts of the VAE shall be based upon “convolutional networks” [CNNs] and respective Keras layers. Based on a suggestions of D. Foster and F. Chollet I use a classes interface to provide the parameters of all invoked Conv2D and Conv2DTranspose layers. But in contrast to D. Foster I also indicate how to include different activation functions (e.g. SeLU). In general I also will use the Keras functional API to define and add layers to the VAE model.

Imports to make Keras model and layer classes work

Below I discuss step by step parts of the code I put into a Python module to be used later in Jupyter notebooks. First we need to import some Python modules; note that you may have to add further statements which import personal modules from paths at your local machine:

import sys
import numpy as np
import os

import tensorflow as tf
from tensorflow.keras.layers import Layer, Input, Conv2D, Flatten, Dense, Conv2DTranspose, Reshape, Lambda, \
                                    Activation, BatchNormalization, ReLU, LeakyReLU, ELU, Dropout, AlphaDropout
from tensorflow.keras.models import Model
# to be consistent with my standard loading of the Keras backend in Jupyter notebooks:  
from tensorflow.keras import backend as B      
from tensorflow.keras.optimizers import Adam

A class for a special Encoder layer

Following the ideas discussed in my last post I now add a class which later allows for the setup of a special customized Keras layer in the Encoder model. This layer will calculate the KL loss for us. To be able to do so, the implementation interface “call()” receives a variable “inputs” which contains references to the mu and var_log layers of the Encoder (see the two last posts in this series).

class My_KL_Layer(Layer):
    @note: Returns the input layers ! Required to allow for z-point calculation
           in a final Lambda layer of the Encoder model    
    # Standard initialization of layers 
    def __init__(self, *args, **kwargs):
        self.is_placeholder = True
        super(My_KL_Layer, self).__init__(*args, **kwargs)

    # The implementation interface of the Layer
    def call(self, inputs, fact = 4.5e-4):
        mu      = inputs[0]
        log_var = inputs[1]
        # Note: from other analysis we know that the backend applies tf.math.functions 
        # "fact" must be adjusted - for MNIST reasonable values are in the range of 0.65e-4 to 6.5e-4
        kl_mean_batch = - fact * B.mean(1 + log_var - B.square(mu) - B.exp(log_var))
        # We add the loss via the layer's add_loss() - it will be added up to other losses of the model     
        self.add_loss(kl_mean_batch, inputs=inputs)
        # We add the loss information to the metrics displayed during training 
        self.add_metric(kl_mean_batch, name='kl', aggregation='mean')
        return inputs

An important point is that a layer based on this class must return its input, namely the mu and var_log layers, for the z-point calculations in the final Encoder layer.

Note that we do not only add the loss to other losses of an eventual VAE model via the layer’s “add_loss()” method, but that we also ensure to get some information about the the size of the KL loss during training by adding the loss to the metrics.

A general class to setup a VAE build on CNNs for Encoder and Decoder

We now build a class to create the essential parts of a VAE. The class will provide the required flexibility and allow for future extensions comprising other TF2.x compatible solutions for KL loss calculations. (In this post we only use a customized layer to get the KL loss).
We start with the classes “__init__” function, which basically transfers saves parameters into class variables.

# The Main class 
# ~~~~~~~~~~~~~~
class MyVariationalAutoencoder():
    Coding suggestions of D. Foster and F. Chollet were modified and extended by RMO 
    @version: V0.1, 25.04 
    @change:  added b_build_all 
    @version: V0.2, 08.05 
    @change:  Handling of the KL-loss via functions (partially not working)  
    @version: V0.3, 29.05 
    @change:  Handling of the KL-loss function via a customized Encoder layer 
    def __init__(self
        , input_dim                  # the shape of the input tensors (for MNIST (28,28,1)) 
        , encoder_conv_filters       # number of maps of the different Conv2D layers   
        , encoder_conv_kernel_size   # kernel sizes of the Conv2D layers 
        , encoder_conv_strides       # strides - here also used to reduce spatial resolution avoid pooling layers 
                                     # used instead of Pooling layers 
        , decoder_conv_t_filters     # number of maps in Con2DTranspose layers 
        , decoder_conv_t_kernel_size # kernel sizes of Conv2D Transpose layers  
        , decoder_conv_t_strides     # strides for Conv2dTranspose layers - inverts spatial resolution
        , z_dim                      # A good start is 16 or 24  
        , solution_type  = 0         # Which type of solution for the KL loss calculation ?
        , act            = 0         # Which type of activation function?  
        , fact           = 0.65e-4   # Factor for the KL loss (0.5e-4 < fact < 1.e-3is reasonable)    
        , use_batch_norm = False     # Shall BatchNormalization be used after Conv2D layers? 
        , use_dropout    = False     # Shall statistical dropout layers be used for tregularization purposes ? 
        , b_build_all    = False  # Added by RMO - full Model is build in 2 steps 
        The encoder_... and decoder_.... variables are Python lists,
        whose length defines the number of Conv2D and Conv2DTranspose layers 
        input_dim : Shape/dimensions of the input tensor - for MNIST (28,28,1) 
        encoder_conv_filters:     List with the number of maps/filters per Conv2D layer    
        encoder_conv_kernel_size: List with the kernel sizes for the Conv-Layers   
        encoder_conv_strides:     List with the strides used for the Conv-Layers   

        act :  determines activation function to use (0: LeakyRELU, 1:RELU , 2: SELU)
               !!!! NOTE: !!!!
               If SELU is used then the weight kernel initialization and the dropout layer need to be special   
               AlphaDropout instead of Dropout + LeCunNormal for kernel initializer
        z_dim : dimension of the "latent_space"
        solution_type : Type of solution for KL loss calculation (0: Customized Encoder layer, 
                                                                  1: model.add_loss()
                                                                  2: definition of training step with Gradient.Tape()
        use_batch_norm = False   # True : We use BatchNormalization   
        use_dropout    = False   # True : We use dropout layers (rate = 0.25, see Encoder)
        b_build_all    = False   # True : Full VAE Model is build in 1 step; 
                                   False: Encoder, Decoder, VAE are build in separate steps   
        = 'variational_autoencoder'

        # Parameters for Layers which define the Encoder and Decoder 
        self.input_dim                  = input_dim
        self.encoder_conv_filters       = encoder_conv_filters
        self.encoder_conv_kernel_size   = encoder_conv_kernel_size
        self.encoder_conv_strides       = encoder_conv_strides
        self.decoder_conv_t_filters     = decoder_conv_t_filters
        self.decoder_conv_t_kernel_size = decoder_conv_t_kernel_size
        self.decoder_conv_t_strides     = decoder_conv_t_strides
        self.z_dim = z_dim

        # Check param for activation function 
        if act < 0 or act > 2: 
            print("Range error: Parameter " + str(act) + " has unknown value ")  
            self.act = act 
        # Factor to scale the KL loss relative to the Binary Cross Entropy loss 
        self.fact = fact 
        # Check param for solution approach  
        if solution_type < 0 or solution_type > 2: 
            print("Range error: Parameter " + str(solution_type) + " has unknown value ")  
            self.solution_type = solution_type 

        self.use_batch_norm = use_batch_norm
        self.use_dropout    = use_dropout

        # Preparation of some variables to be filled later 
        self._encoder_input  = None  # receives the Keras object for the Input Layer of the Encoder 
        self._encoder_output = None  # receives the Keras object for the Output Layer of the Encoder 
        self.shape_before_flattening = None # info of the Encoder => is used by Decoder 
        self._decoder_input  = None  # receives the Keras object for the Input Layer of the Decoder
        self._decoder_output = None  # receives the Keras object for the Output Layer of the Decoder

        # Layers / tensors for KL loss      = None # receives special Dense Layer's tensor for KL-loss 
        self.log_var = None # receives special Dense Layer's tensor for KL-loss 

        # Parameters for SELU - just in case we may need to use it somewhere 
        # see selu
        self.selu_scale = 1.05070098
        self.selu_alpha = 1.67326324

        # The number of Conv2D and Conv2DTranspose layers for the Encoder / Decoder 
        self.n_layers_encoder = len(encoder_conv_filters)
        self.n_layers_decoder = len(decoder_conv_t_filters)

        self.num_epoch = 0 # Intialization of the number of epochs 

        # A matrix for the values of the losses 
        self.std_loss  = tf.TensorArray(tf.float32, size=0, dynamic_size=True, clear_after_read=False)

        # We only build the whole AE-model if requested
        self.b_build_all = b_build_all
        if b_build_all:

Note that for the present post we (can) only use “solution_type = 0” !

A method to build the Encoder

The class shall provide a method to build the Encoder. For our present purposes including a customized layer based on the class “My_KL_Layer”. This layer just returns its input – namely the layers “mu” and “var_log” for the variational calculation of z-points, but it also calculates the KL loss which is added to other model losses.

    # Method to build the Encoder
    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
    def _build_enc(self, solution_type = 0, fact=-1.0):
        @summary: Method to build the Encoder part of the AE 
                  This will be a CNN defined by the parameters to __init__   
        @note:    For self.solution = 0, we add an extra layer to calculate the KL loss 
        @note:    The last layer uses a sigmoid activation to create the output 
                  This may not be compatible with some scalers applied to the input data (images)    

        # Check whether "fact" for the KL loss shall be overwritten
        if fact < 0:
            fact = self.fact  
        # Preparation: We later need a function to calculate the z-points in the latent space 
        # this function will be used by an eventual Lambda layer of the Encoder 
        def z_point_sampling(args):
            A point in the latent space is calculated statistically 
            around an optimized mu for each sample 
            mu, log_var = args # Note: These are 1D tensors !
            epsilon = B.random_normal(shape=B.shape(mu), mean=0., stddev=1.)
            return mu + B.exp(log_var / 2) * epsilon

        # Input "layer"
        self._encoder_input = Input(shape=self.input_dim, name='encoder_input')

        # Initialization of a running variable x for individual layers 
        x = self._encoder_input

        # Build the CNN-part with Conv2D layers 
        # Note that stride>=2 reduces spatial resolution without the help of pooling layers 
        for i in range(self.n_layers_encoder):
            conv_layer = Conv2D(
                filters = self.encoder_conv_filters[i]
                , kernel_size = self.encoder_conv_kernel_size[i]
                , strides = self.encoder_conv_strides[i]
                , padding = 'same'  # Important ! Controls the shape of the layer tensors.    
                , name = 'encoder_conv_' + str(i)
            x = conv_layer(x)
            # The "normalization" should be done ahead of the "activation" 
            if self.use_batch_norm:
                x = BatchNormalization()(x)

            # Selection of activation function (out of 3)      
            if self.act == 0:
                x = LeakyReLU()(x)
            elif self.act == 1:
                x = ReLU()(x)
            elif self.act == 2: 
                # RMO: Just use the Activation layer to use SELU with predefined (!) parameters 
                x = Activation('selu')(x) 

            # Fulfill some SELU requirements 
            if self.use_dropout:
                if self.act == 2: 
                    x = AlphaDropout(rate = 0.25)(x)
                    x = Dropout(rate = 0.25)(x)

        # Last multi-dim tensor shape - is later needed by the decoder 
        self._shape_before_flattening = B.int_shape(x)[1:]

        # Flattened layer before calculating VAE-output (z-points) via 2 special layers 
        x = Flatten()(x)
        # "Variational" part - create 2 Dense layers for a statistical distribution of z-points       = Dense(self.z_dim, name='mu')(x)
        self.log_var = Dense(self.z_dim, name='log_var')(x)

        if solution_type == 0: 
            # Customized layer for the calculation of the KL loss based on mu, var_log data
            # We use a customized layer accoding to a class definition  
  , self.log_var = My_KL_Layer()([, self.log_var], fact=fact)
        # Layer to provide a z_point in the Latent Space for each sample of the batch 
        self._encoder_output = Lambda(z_point_sampling, name='encoder_output')([, self.log_var])

        # The Encoder Model 
        self.encoder = Model(self._encoder_input, self._encoder_output)

A method to build the Decoder

The following function should be self-evident; it reverses the Encoder’s operations and uses z-points of the latent space as input.

    # Method to build the Decoder
    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
    def _build_dec(self):
        @summary: Method to build the Decoder part of the AE 
                  Normally this will be a reverse CNN defined by the parameters to __init__   

        # Input layer - aligned to the shape of the output layer 
        self._decoder_input = Input(shape=(self.z_dim,), name='decoder_input')

        # Here we use the tensor shape info from the Encoder          
        x = Dense(
        x = Reshape(self._shape_before_flattening)(x)

        # The inverse CNN
        for i in range(self.n_layers_decoder):
            conv_t_layer = Conv2DTranspose(
                filters = self.decoder_conv_t_filters[i]
                , kernel_size = self.decoder_conv_t_kernel_size[i]
                , strides = self.decoder_conv_t_strides[i]
                , padding = 'same' # Important ! Controls the shape of tensors during reconstruction
                                   # we want an image with the same resolution as the original input 
                , name = 'decoder_conv_t_' + str(i)
            x = conv_t_layer(x)

            # Normalization and Activation 
            if i < self.n_layers_decoder - 1:
                # Also in the decoder: normalization before activation  
                if self.use_batch_norm:
                    x = BatchNormalization()(x)
                # Choice of activation function
                if self.act == 0:
                    x = LeakyReLU()(x)
                elif self.act == 1:
                    x = ReLU()(x)
                elif self.act == 2: 
                    #x = self.selu_scale * ELU(alpha=self.selu_alpha)(x)
                    x = Activation('selu')(x)
                # Adaptions to SELU requirements 
                if self.use_dropout:
                    if self.act == 2: 
                        x = AlphaDropout(rate = 0.25)(x)
                        x = Dropout(rate = 0.25)(x)
            # Last layer => Sigmoid output 
            # => This requires scaled input => Division of pixel values by 255
                x = Activation('sigmoid')(x)

        # Output tensor => a scaled image 
        self._decoder_output = x

        # The Decoder model 
        self.decoder = Model(self._decoder_input, self._decoder_output)

Note that we do not include any loss calculations in the Decoder model. The main loss – namely according to the “binary cross entropy” will later be added to the “fit()” method of the full Keras based VAE model.

The full VAE model

We have already created two Keras models for the Encoder and Decoder. We now combine them to the full VAE model and save this model in a variable of the object derived from our class.

    # Function to build the full AE
    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    def _build_VAE(self):     
        model_input  = self._encoder_input
        model_output = self.decoder(self._encoder_output)
        self.model = Model(model_input, model_output, name="vae")

    # Function to build full AE in one step if requested
    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    def _build_all(self):


For our present solution with the customized layer for the KL loss we now provide a matching “compile()” function:

    # Function to compile VA-model with a KL-layer in the Encoder 
    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    def compile_for_KL_Layer(self, learning_rate):
        if self.solution_type != 0: 
            print("The compile_L() function is only compatible with solution_type = 0")
        self.learning_rate = learning_rate
        # Optimizer 
        optimizer = Adam(learning_rate=learning_rate)
        self.model.compile(optimizer=optimizer, loss="binary_crossentropy",

This is the place where we include the main contribution to the loss – namely by a “binary cross-entropy” calculation with respect to the differences between the original input tensor top our model and its output tensor. We had to use the function BinaryCrossentropy(name=’bce’) to be able to give the respective output during training a short name. All in all we expect an output during training comprising:

  • the total loss
  • the contribution from the binary_crossentropy
  • the KL contribution

A method for training

We are almost finished. We just need a matching method for starting the training via calling the “fit()“-function of our Keras based VAE model:

    def train_model_with_KL_Layer(self, x_train, batch_size, epochs, initial_epoch = 0):     
            , x_train
            , batch_size = batch_size
            , shuffle = True
            , epochs = epochs
            , initial_epoch = initial_epoch

Note that we called the same “x_train” batch of samples twice: The standard “y” output “labels” actually are the input samples (which is, of course, the core characteristic of AEs). We shuffle data during training.

Why use a special function of the class at all and not directly call fit() from Jupyter notebook cells?
Well, at this point we could include multiple other things as custom callbacks (e.g. for special output or model saving) and a scheduler. See e.g. the code of D. Foster at his Github site for variants. For the sake of briefness I skip these techniques in my post.

Jupyter cells to use our class

Let us see how we can use our carefully crafted class with a Jupyter notebook. As I personally gather Python modules (via Eclipse PyDev) in some special folders, I first have to add a path:

Cell 1:

import sys
# !!! ADAPT to YOUR needs !!!!! 

Of course, you must adapt this path to your personal situation.

The next cell contains module imports
Cell 2

import numpy as np
import time 
import os
import sklearn # could be used for scalers
import matplotlib as mpl
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
import matplotlib.patches as mpat 

# tensorflow and keras 
import tensorflow as tf
from tensorflow import keras as K
from tensorflow.python.keras import backend as B 
from tensorflow.keras import models
from tensorflow.keras import layers
from tensorflow.keras import regularizers
from tensorflow.keras import optimizers
from tensorflow.keras import metrics
from tensorflow.keras.datasets import mnist
from tensorflow.keras.optimizers import schedules
from tensorflow.keras.utils import to_categorical
from tensorflow.python.client import device_lib
from tensorflow.keras.datasets import mnist

# My VAE-class 
from my_AE_code.models.My_VAE import MyVariationalAutoencoder

I then suppress some warnings regarding my Nvidia card and list the available Cuda devices.

Cell 3

# Suppress some TF2 warnings on negative NUMA node number
# see
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'  # or any {'0', '1', '2'}

We then control resource usage:
Cell 4

# Restrict to GPU and activate jit to accelerate 
# IMPORTANT NOTE: To change any of the following values you MUT restart the notebook kernel ! 
b_tf_CPU_only      = False   # we want to work on a GPU  
tf_limit_CPU_cores = 4 
tf_limit_GPU_RAM   = 2048

if b_tf_CPU_only: 
    tf.config.set_visible_devices([], 'GPU')   # No GPU, only CPU 
    # Restrict number of CPU cores
    gpus = tf.config.experimental.list_physical_devices('GPU')
    [tf.config.experimental.VirtualDeviceConfiguration(memory_limit = tf_limit_GPU_RAM)])

# JiT optimizer 

Let us load MNIST for test purposes:
Cell 5

def load_mnist():
    (x_train, y_train), (x_test, y_test) = mnist.load_data()

    x_train = x_train.astype('float32') / 255.
    x_train = x_train.reshape(x_train.shape + (1,))
    x_test = x_test.astype('float32') / 255.
    x_test = x_test.reshape(x_test.shape + (1,))

    return (x_train, y_train), (x_test, y_test)

(x_train, y_train), (x_test, y_test) = load_mnist()

Provide the VAE setup variables to our class:
Cell 6

z_dim = 2
vae = MyVariationalAutoencoder(
    input_dim = (28,28,1)
    , encoder_conv_filters = [32,64,128]
    , encoder_conv_kernel_size = [3,3,3]
    , encoder_conv_strides = [1,2,2]
    , decoder_conv_t_filters = [64,32,1]
    , decoder_conv_t_kernel_size = [3,3,3]
    , decoder_conv_t_strides = [2,2,1]
    , z_dim = z_dim
    , act   = 0
    , fact  = 5.e-4

Set up the Encoder:
Cell 7

# overwrite the KL fact from the class 
fact = 2.e-4 

Build the Decoder:
Cell 8


Build the VAE model:
Cell 9


Cell 10


Train / fit the model to the training data
Cell 11

EPOCHS = 6     # for real runs ca. 40 
    , batch_size = BATCH_SIZE
    , epochs = EPOCHS
    , initial_epoch = INITIAL_EPOCH

For the given parameters I got the following output on my old GTX960

Epoch 1/6
469/469 [==============================] - 12s 24ms/step - loss: 0.2613 - bce: 0.2589 - kl: 0.0024
Epoch 2/6
469/469 [==============================] - 12s 25ms/step - loss: 0.2174 - bce: 0.2159 - kl: 0.0015
Epoch 3/6
469/469 [==============================] - 11s 23ms/step - loss: 0.2100 - bce: 0.2085 - kl: 0.0015
Epoch 4/6
469/469 [==============================] - 11s 23ms/step - loss: 0.2057 - bce: 0.2042 - kl: 0.0015
Epoch 5/6
469/469 [==============================] - 11s 23ms/step - loss: 0.2034 - bce: 0.2019 - kl: 0.0015
Epoch 6/6
469/469 [==============================] - 11s 23ms/step - loss: 0.2019 - bce: 0.2004 - kl: 0.0015

So 11 secs for an epoch of 60,000 samples with batch-size = 128 is a reference point. Note that this is obviously faster than what we got for the solution discussed in the last post.

Just to give you an impression of other results:
For z_dim = 2, fact = 2.e-4 and 60 epochs I got something like the following data point distribution in the latent space:

I shall discuss more results – also for other test data sets – in future posts in this blog.


In this post we have build a class to set up a VAE based on an Encoder and a Decoder model with Conv2D and Conv2dTranspose layers. We delegated the calculation of the KL loss to a customized layer of the Encoder, whilst the main loss contribution was defined in form of a binary-crossentropy evaluation with the help of the fit()-function of the VAE model. All loss contributions were displayed as “metrics” elements during training. The presented solution is fully compatible with Tensorflow 2.8 and eager execution. It is in my opinion also elegant and very Keras oriented as all important operations are encapsulated in a continuous sequence of layers. We also found this to be a relatively fast solution.

In the next post of this series
Variational Autoencoder with Tensorflow 2.8 – VI – KL loss via tensor transfer and multiple output
we are going to use our class to adapt an older suggestion of D.Foster to the requirements of TF2.8.


F. Chollet, Deep Learning mit Python und Keras, 2018, 1-te dt. Auflage, mitp Verlags GmbH & Co.KG, Frechen

D. Foster, “Generatives Deep Learning”, 2020, 1-te dt. Auflage, dpunkt Verlag, Heidelberg in Kooperation mit Media Inc.O’Reilly, ISBN 978-3-960009-128-8. See Kap. 3 and the VAE code published at

Louis Tiao, “Implementing Variational Autoencoders in Keras: Beyond the Quickstart Tutorial”, 2017,

Recommendation: The article of L. Tiao is not only interesting regarding Keras modularity. I like it very much also for his mathematical depth. I highly recommend his article as a source of inspiration, especially with respect to alternative divergences. Please, also follow Tiao’s list of well selected literature references.

And before I forget it:
Ceterum censeo: The worst living fascist and war criminal today, who must be isolated, denazified and imprisoned, is the Putler.